Previously we were using `getPlainType` to match
the parameter type against the key path's base
type. This gave us the external parameter type,
which would be the element type for a variadic
parameter. However the code we generate expects
the internal parameter type, which is provided by
`getParameterType`.
Resolves rdar://problem/59445486.
When present in a function builder, buildFinalResult() will be called on
the value of the outermost block to form the final result of the closure.
This allows one to collapse the full function builder computation into
a single result without having to do it in each buildBlock() call.
Reverts apple/swift#30006. It caused a regression that we'd like to address before re-landing:
```swift
struct X {
var cgf: CGFloat
}
func test(x: X?) {
let _ = (x?.cgf ?? 0) <= 0.5
}
```
This reverts commit 0a6b444b49.
This reverts commit ed255596a6.
This reverts commit 3e01160a2f.
This reverts commit 96297b7e39.
Resolves: rdar://problem/60185506
Wherever we have constraints that involve pattern matching, use the
PatternMatch locator element. Additionally, don't use the TupleElement
locator element for tuple patterns, because it violates assumptions used
for diagnostics.
The new test was crashing; now it has a terrible diagnostic for which I
need to think harder about a fix.
Consider following example:
```swift
enum E {
case foo((x: Int, y: Int))
case bar(x: Int, y: Int)
}
func test(e: E) {
if case .foo(let x, let y) = e {}
if case .bar(let tuple) = e {}
}
```
Both of `if case` expressions have to be supported:
1. `case .foo(let x, let y) = e` allows a single tuple
parameter to be "destructured" into multiple arguments.
2. `case .bar(let tuple) = e` allows to match multiple
parameters with a single tuple argument.
Resolves: rdar://problem/60061646
parseClosureSignatureIfPresent.
Otherwise, closure parameters that were parsed as "potentially destructured"
will fail constraint generation, even after the parser has decided
they are not destructured.
This is a follow up to changes related to contextual availability
(https://github.com/apple/swift/pull/29921) which increased score
for unavailable declarations only if they were overloaded but
overlooked a case of a single unavailable choice.
Resolve: rdar://problem/60047439
Since constraint system now handles pattern matching it has
to preverse label matching semantics which existed in original
code: if pattern element has a label it has to match the one
in the tuple type it's matched against.
Resolves: rdar://problem/60048356
doesn't conform to the associatedtype's protocol (only in diagnostic mode).
This allows the solver to find solutions for more cases involving requirement
failures for dependent member types without special cases across the solver
that check for dependent member types with no type variables.
The normal type checking of switch statements checks the switch subject
first, without context, then evaluates the cases. Introduce a one-way
constraint into the type checking of switch statements within function
builders to provide this same behavior. The difference can be observed
in code such as:
enum E {
case a
case b(Int, String?)
}
enum E2 {
case b(Int, String?)
}
func getSomeEnumOverloaded(_: Double) -> E { return .a }
func getSomeEnumOverloaded(_: Int) -> E2 { return .b(0, nil) }
func f() {
switch getSomeEnumOverloaded(17) {
case .a: // error: no member named "a" in E2
print("a")
default:
print("default")
}
}
When the subject expression `getSomeEnumOverloaded(17)` is resolved
without consider cases, it will select the second
`getSomeEnumOverloaded(_:)`, because the literal 17 prefers to be
an `Int`. The type checking of the first case would then fail because E2
does not contain a member named "a".
Prior to this change, the same expression within a function
builder would succeed in type checking, because the lack of case named
"a" within "E2" would make the second getSomeEnumOverloaded() unusable.
Making this code work by considering the cases along with the subject
expression is not unreasonable, and may be the right long term
direction for the language. However, it's a feature that should be
discussed separately, and the semantics should agree between function
builders and normal statements.
Big thanks to John McCall for noting the missing one-way constraint!
If mismatch detected by `repairFailures` is related to a complex
wrapped value of optional type formed from optional-to-optional
or value-to-optional conversion let's not try to fix it directly
but let `simplifyRestrictedConstraintImpl` record a top-level fix
for more context.
Resolves: rdar://problem/59703585
Implement support for switch statements within function builders. Cases can
perform arbitrary pattern matches, e.g.,
tuplify(true) { c in
"testSwitchCombined"
switch e {
case .a:
"a"
case .b(let i, _?), .b(let i, nil):
i + 17
}
}
subject to the normal rules of switch statements. Cases within function
builders cannot, however, include “fallthrough” statements, because those
(like “break” and “continue”) are control flow.
The translation of performed for `switch` statements is similar to that of
`if` statements, using `buildEither(first:)` and `buildEither(second:)` on
the function builder type.
This is the bulk of switch support, tracked by rdar://problem/50426203.
If there are any conversion restrictions present while trying to repair
failures related to contextual type, let's give `simplifyRestrictedConstraintImpl`
a chance to run and fix the problem.
Resolves: rdar://problem/59773317
Instead of always opening argument type represented by a collection
without type variables (to support subtyping when element is a labeled tuple),
let's try original type first and if that fails use a slower path with
indirection which attempts `array upcast`. Doing it this way helps to
propagate contextual information faster which fixes a performance regression.
Resolves: rdar://problem/54580247
This is something I noticed by inspection while working on
<https://bugs.swift.org/browse/SR-75>.
Inside a static method, 'self' is a metatype value, so
'self.instanceMethod' produces an unbound reference of type
(Self) -> (Args...) -> Results.
You might guess that 'super.instanceMethod' can similarly
be used to produce an unbound method reference that calls
the superclass method given any 'self' value, but unfortunately
it doesn't work.
Instead, 'super.instanceMethod' would produce the same
result as 'self.instanceMethod'. Maybe we can implement this
later, but for now, let's just diagnose the problem.
Note that partially-applied method references with 'super.'
-- namely, 'self.staticMethod' inside a static context, or
'self.instanceMethod' inside an instance context, continue
to work as before.
They have the type (Args...) -> Result; since the self value
has already been applied we don't hit the representational
issue.
Let's delay attempting any bindings for type variables representing
parameters or result type of the closure until the body is "opened"
because it's impossible to infer a full set of bindings until all
constraints related to a closure have been generated.
Resolves: rdar://problem/59741308
Teach pattern matching involving "as" patterns to work properly in
function builders. The code almost handled this, but prematurely
prechecking expressions in patterns broke it.
Use the generalized constraint generation and binding for patterns to
introduce support for if-let and if-case in function builders, handling
arbitrary patterns.
Part of function builder generalization, rdar://problem/50426203.
Fix a crash in dynamic member lookup attempting to recursively
lookup a member on the same base type.
The problem is related to `isSelfRecursiveKeyPathDynamicMemberLookup`
which failed to look through l-value wrapping base type on each side of
the comparison, that's important because it's possible to have l-value
mismatch due to the fact that implicit call always gets l-value base
type but actual subscript which triggered dynamic lookup might be r-value.
Resolves: [SR-11743](https://bugs.swift.org/browse/SR-11743)
Resolves: rdar://problem/57091169
Generate a complete set of constraints for EnumElement patterns, e.g.,
case let .something(x, y)
Most of the complication here comes from the implicit injection of optionals,
e.g., this case can be matched to an optional of the enum type of which
`something` is a member. To effect this change, introduce a locator for
pattern matching and use it to permit implicit unwrapping during member
lookup without triggering an error.
Note also labels are dropped completely when performing the match,
because labels can be added or removed when pattern matching. Label
conflict are currently diagnosed as part of coercePatternToType, which
suffices so long as overloading cases based on argument labels is not
permitted.
The primary observable change from this commit is in diagnostics: rather
than diagnostics being triggered by `TypeChecker::coercePatternToType`,
diagnostics for matching failures here go through the diagnostics machinery
of the constraint solver. This is currently a regression, because
there are no custom diagnostics for pattern match failures within the
constraint system. This regression will be addressed in a subsequent
commit; for now, leave those tests failing.
This adds the RangeSet and DiscontiguousSlice types, as well as collection
operations for working with discontiguous ranges of elements. This also adds
a COWLoggingArray type to the test suite to verify that mutable collection
algorithms don't perform unexpected copy-on-write operations when mutating
slices mid-operation.