Add mangling scheme for `@differentiable` and `@differentiable(linear)` function
types. Mangling support is important for debug information, among other things.
Update docs and add tests.
Resolves TF-948.
Teach SILGen to emit a separate SIL function to capture the
initialization of the backing storage type for a wrapped property
based on the wrapped value. This eliminates manual code expansion at
every use site.
When mangling a dependent protocol conformance ref, the mangler currently uses `0_` to mean an unknown index and `N_` to mean the index `N - 1`. Unfortunately, this is somewhat confused: `0_` is actually the mangling for index 1, and index 0 is supposed to be mangled as just `_`, so true indexes are actually offset by 2. So the first thing to do here is to clarify what's going on throughout the mangler, demangler, and ABI documentation.
Also, the demangler attempts to produce a `DependentProtocolConformance*` node with the appropriate child nodes and an optional index payload. Unfortunately, demangle nodes cannot have both children and a value payload, so whenever it creates a node with an index payload, the demangler will assert. It does this whenever the mangled index is not 0; since (per above) the mangler always produces a non-zero mangled index in this production, the demangler will always assert when processing these. So clearly this is well-tested code, since +asserts builds will always trigger the demangler when mangling a name in the first place. To fix this, we need to make the index a child of the mangling node instead of its payload; at the same time, we can make it store the semantically correct index value and just introduce a new `UnknownIndex` node to handle the `0_` case. This is easy because all current clients ignore this information.
Finally, due to an apparent copy-and-paste error, the demangler attempts to produce a `DependentProtocolConformanceRoot` node for associated protocol conformances; this is easily resolved.
This fixes the crash in SR-10926 (rdar://51710424). The obscurity of this crash --- which originally made us think it might be related to Error self-conformance --- is because it is only triggered when a function signature takes advantage of a concrete-but-dependent retroactive conformance, which (to be both concrete and dependent) must furthermore be conditional. Testing the other cases besides a root conformance requires an even more obscure testcase.
The type checker calls these types Builtin.FPIEEE<size>; the demangler
should too.
This is just cosmetic at the moment, but it was causing problems when
I added support for builtin types to the TypeDecoder.
New(er) grammar:
// same module as conforming type, or non-unique
protocol-conformance-ref ::= protocol 'HP'
// same module as protocol
protocol-conformance-ref ::= protocol 'Hp'
// retroactive
protocol-conformance-ref ::= protocol module
We don't make use of this distinction anywhere yet, but we could in
the future.
Due to some unfortunate refactoring, protocol-conformance-ref is a
nonterminal in the mangling grammar that doesn't have its own
operator:
```
protocol-conformance-ref ::= protocol module?
```
Both "module" and "protocol" can be an "identifier", which introduces
a mangling collision. Address the mangling collision by using the
operator "HP".
Fixes rdar://problem/46735592.
Start emitting associated conformance requirement descriptors for
inherited protocols, so we have a symbol to reference from resilient
witness tables and mangled names in the future.
The remangler for the Objective-C runtime was dropping generic arguments
of extension contents, leading to collisions with @objc class names.
Include the generic arguments of extensions.
Fixes rdar://problem/45956357.
Change the retroactive conformance mangling to use the new
any-protocol-conformance mangling, which maintains more information about
concrete conformances. Specifically, it maintains conformance information
for conditional requirements. It also uses the protocol-conformance-ref
production that will eventually allow symbolic references to protocol
conformance descriptors.
While here, extend the “is retroactive” check during mangling to look for
retroactive conformances in the conditional requirements of a conformance.
The immediate conformance might not be retroactive, but its specialization
might depend on a retroactive conformance. Mangle these as “retroactive”, so
we can correctly reconstruct the exact type.
Default associated conformance accessors will be used in default
witness tables to fill in associated conformances for defaulted
associated types. Add (de|re|)mangling support for them and make them
linking entities in IRGen.
Associated conformance descriptors are aliases that refer to associated
conformance requirements within a protocol descriptor’s list of
requirements. They will be used to provide protocol resilience against
the addition of new associated conformance requirements (which only makes
sense for newly-introduced, defaulted associated types).
Introduce an alias that refers one element prior to the start of a
protocol descriptor’s protocol requirements. This can be subtracted from
an associated type descriptor address to determine the offset of the
associated type accessor within a corresponding witness table. The code
generation for the latter is not yet implemented.
For example:
public struct Mystruct<T> {
func testit<U>(x: T, u: U) {
typealias Myalias = AnyObject
}
}
In this case the Myalias has a generic function as context.
This patch adds SIL-level debug info support for variables whose
static type is rewritten by an optimizer transformation. When a
function is (generic-)specialized or inlined, the static types of
inlined variables my change as they are remapped into the generic
environment of the inlined call site. With this patch all inlined
SILDebugScopes that point to functions with a generic signature are
recursively rewritten to point to clones of the original function with
new unique mangled names. The new mangled names consist of the old
mangled names plus the new substituions, similar (or exactly,
respectively) to how generic specialization is handled.
On libSwiftCore.dylib (x86_64), this yields a 17% increase in unique
source vars and a ~24% increase in variables with a debug location.
rdar://problem/28859432
rdar://problem/34526036
This patch adds SIL-level debug info support for variables whose
static type is rewritten by an optimizer transformation. When a
function is (generic-)specialized or inlined, the static types of
inlined variables my change as they are remapped into the generic
environment of the inlined call site. With this patch all inlined
SILDebugScopes that point to functions with a generic signature are
recursively rewritten to point to clones of the original function with
new unique mangled names. The new mangled names consist of the old
mangled names plus the new substituions, similar (or exactly,
respectively) to how generic specialization is handled.
On libSwiftCore.dylib (x86_64), this yields a 17% increase in unique
source vars and a ~24% increase in variables with a debug location.
rdar://problem/28859432
rdar://problem/34526036
When mangling a specialized use of a typealias in a protocol, we end up
with a "bound generic protocol" mangling, with the one substitution
replacing Self with some other type. Handle de-mangling and
re-mangling of such names.
Fixes rdar://problem/41549126.
The mangling of generic typealiases was using the underlying type’s generic
arguments rather than the generic arguments for the typealias itself.
Directly encode the generic arguments from the substitution map instead.
Also address some related issues with remangling generic typealiases.
Fixes rdar://problem/41444286.
This is a separate tool so we can use all of LLVM without worrying about
creating a dependency from the demangler on LLVM's libsupport.
I am going to use it to fix cmpcodesize for the new mangling by eliminating
cmpcodesize's usage of regex to classify symbols. Instead, we can just read in
the yaml version of the symbol trees for each demangled node and process that
instead.
rdar://41146023
A "retroactive" protocol conformance is a conformance that is provided
by a module that is neither the module that defines the protocol nor
the module that defines the conforming type. It is possible for such
conformances to conflict at runtime, if defined in different modules
that were not both visible to the compiler at the same time.
When mangling a bound generic type, also mangle retroactive protocol
conformances that were needed to satisfy the generic requirements of
the generic type. This prevents name collisions between (e.g.) types
formed using retroactive conformances from different modules. The
impact on the size of the mangling is expected to be relatively small,
because most conformances are not retroactive.
Fixes the ABI part of rdar://problem/14375889.
(and 'La'...'Lj')
Use this for the synthesized structs for error enums, as described in
the previous commit, instead of reusing the "private discriminator"
feature. I left some space in the APIs for "related entity kinds" that
are longer than a single character, but I don't actually expect to use
it any time soon. It's mostly just easier to deal with StringRef than
with a bare char.
Note that this doesn't perfectly round-trip to the old mangling; I had
it treat these nodes as private discriminators with a prefixed "$"
instead. We don't depend on that for anything, though.