Previously we could skip default literal or
supertype bindings if we had already found a solution
with fixes, which could lead us to miss bindings
that produce better diagnostics.
Tweak the logic such that we continue exploring if
we're in diagnostic mode.
Resolves SR-12399.
Reverts apple/swift#30006. It caused a regression that we'd like to address before re-landing:
```swift
struct X {
var cgf: CGFloat
}
func test(x: X?) {
let _ = (x?.cgf ?? 0) <= 0.5
}
```
This reverts commit 0a6b444b49.
This reverts commit ed255596a6.
This reverts commit 3e01160a2f.
This reverts commit 96297b7e39.
Resolves: rdar://problem/60185506
doesn't conform to the associatedtype's protocol (only in diagnostic mode).
This allows the solver to find solutions for more cases involving requirement
failures for dependent member types without special cases across the solver
that check for dependent member types with no type variables.
Just like in cases where both sides are dependent member types
with resolved base that can't be simplified to a concrete type
let's ignore this mismatch and mark affected type variable as a hole
because something else has to be fixed already for this to happen.
When there is a conversion from e.g. `(A) -> Void` to `(B) -> Void`
matching between `A` and `B` is going to have a special locator which
doesn't end in `TupleElement`, so `repairFailures` has to account
for that and fix it just like regular argument mismatch.
Resolves: rdar://problem/59066040
It's done by first retrieving all generic parameters from each solution,
filtering boundings into distrinct set and diagnosing any differences.
For example:
```swift
func foo<T>(_: T, _: T) {}
func bar(x: Int, y: Float) {
foo(x, y)
}
```
If there is a subtype relationship between N types we have to make
sure that type chain is attempted in reverse order because we can't
infer bindings transitively through type variables and attempting
it in any other way would miss potential bindings across the chain.
Solutions passed to `diagnoseAmbiguityWithFixes` aren't filtered
so we need to remove all of the solutions with the score worse
than overall "best". Also logic has to account for some fixes being
"warnings".
If none of the candidates produce expected contextual type, record
all of the posibilities to produce a note per and diagnose this as
contextual type mismatch instead of a reference ambiguity.
* [TypeChecker] Enclosing stubs protocol note within editor mode
* [test] Removing note from test where there is no -diagnostics-editor-mode flag
* Formatting modified code
* [tests] Fixing tests under validation-tests
Patch up all the places that are making a syntactic judgement about the
isInvalid() bit in a ValueDecl. They may continue to use that query,
but most guard themselves on whether the interface type has been set.
This is an amalgam of simplifications to the way VarDecls are checked
and assigned interface types.
First, remove TypeCheckPattern's ability to assign the interface and
contextual types for a given var decl. Instead, replace it with the
notion of a "naming pattern". This is the pattern that semantically
binds a given VarDecl into scope, and whose type will be used to compute
the interface type. Note that not all VarDecls have a naming pattern
because they may not be canonical.
Second, remove VarDecl's separate contextual type member, and force the
contextual type to be computed the way it always was: by mapping the
interface type into the parent decl context.
Third, introduce a catch-all diagnostic to properly handle the change in
the way that circularity checking occurs. This is also motivated by
TypeCheckPattern not being principled about which parts of the AST it
chooses to invalidate, especially the parent pattern and naming patterns
for a given VarDecl. Once VarDecls are invalidated along with their
parent patterns, a large amount of this diagnostic churn can disappear.
Unfortunately, if this isn't here, we will fail to catch a number of
obviously circular cases and fail to emit a diagnostic.
Argument-to-Parameter mismatch handles conformance failures
related to arguments, so the logic in `MissingConformanceFailure`
which wasn't entirely correct is now completely obsolete.
Resolves: rdar://problem/56234611
Number the parameters starting at 1 in order to
match other diagnostics such as
diag::missing_argument_positional, and change the
text to make it explicit that we're referring to
the parameter position (rather than argument
position).
The recursive properties now include the type alias generic parameters
and parent type, not just the underlying type. This means that a type
alias type like Foo<T>.Bar can be dependent even if its underlying type
is not dependent.
To preserve correct behavior under substitution, the parent type
of a protocol type alias must be the 'Self' generic parameter and
not the protocol's existential type.