Otherwise we can get in trouble when a local type is named, say,
'Sequence'.
Also contains test updates and a fix for Harlan's previous commit,
which actually affects all typealiases, not just those in the Builtin
module.
Rather than relying on the NameAliasType we get by default for references
to non-generic typealiases, use BoundNameAliasType consistently to handle
references to typealiases that are formed by the type checker.
There was a ton of complicated logic here to work around
two problems:
- Same-type constraints were not represented properly in
RequirementReprs, requiring us to store them in strong form
and parse them out when printing type interfaces.
- The TypeBase::getAllGenericArgs() method did not do the
right thing for members of protocols and protocol extensions,
and so instead of simple calls to Type::subst(), we had
an elaborate 'ArchetypeTransformer' abstraction repeated
in two places.
Rewrite this code to use GenericSignatures and
GenericFunctionType instead of old-school GenericParamLists
and PolymorphicFunctionType.
This changes the code completion and AST printer output
slightly. A few of the changes are actually fixes for cases
where the old code didn't handle substitutions properly.
A few others are subjective, for example a generic parameter
list of the form <T : Proto> now prints as <T where T : Proto>.
We can add heuristics to make the output whatever we want
here; the important thing is that now we're using modern
abstractions.
This fixes several issues:
- By default parent types of alias types are not printed which results in
- Erroneous fixits, for example when casting to 'Notification.Name' from a string, which ends up adding erroneous cast
as "Name(rawValue: ...)"
- Hard to understand types in code-completion results and diagnostics
- When printing with 'fully-qualified' option typealias types are printed erroneously like this "<PARENT>.Type.<TYPEALIAS>"
The change make typealias printing same as nominal types and addresses the above.
As the initial step, we remove any synthesized extensions requiring a tuple's conforming to nominals, which
never happens. This will remove multiple useless synthesized extensions for Dictionary.
For a concrete type, members from its conforming protocols' extensions can be hard
to manually surface. In this commit, when printing Swift modules, we start to replicate these
extensions and synthesize them as if they are the concrete type's native extensions.
Credit to Doug for suggesting this practice.