The layout changes to become relative-address based. For this to be
truly immutable (at least on Darwin), things like the RO data patterns
must be moved out of the pattern header. Additionally, compress the
pattern header so that we do not include metadata about patterns that
are not needed for the type.
Value metadata patterns just include the metadata kind and VWT.
The design here is meant to accomodate non-default instantiation
patterns should that become an interesting thing to support in the
future, e.g. for v-table specialization.
Change the "metadata base offset" variable into a "class metadata bounds"
variable that contains the base offset and the +/- bounds on the class.
Link this variable from the class descriptor when the class has a resilient
superclass; otherwise, store the +/- bounds there. Use this variable to
compute the immediate-members offset for various runtime queries. Teach the
runtime to fill it in lazily and remove the code to compute it from the
generated code for instantiation. Identify generic arguments with the start
of the immediate class metadata members / end of the {struct,enum} metadata
header and remove the generic-arguments offset from generic type descriptors.
Minimize the generic class metadata template by removing the
class header and base-class members. Add back the set of
information that's really required for instantiation.
Teach swift_allocateGenericClass how to allocate classes without
superclass metadata. Reorder generic initialization to establish
a stronger phase-ordering between allocation (the part that doesn't
really care about the generic arguments) and initialization (the
part that really does care about the generic arguments and therefore
might need to be delayed to handle metadata cycles).
A similar thing needs to happen for resilient class relocation.
This is yet another waypoint on the path towards the final
generic-metadata design. The immediate goal is to make the
pattern a private implementation detail and to give the runtime
more visibility into the allocation and caching of generic types.
All of the information contained by this field (list of property names)
is already encoded as part of the field reflection metadata and
is accessible via `swift_getFieldAt` runtime method.
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.
If a generic class has non-resilient ancestry, we cannot use
the template size so far as the constant value of the base offset
variable, because the template will not contain entries for all
metadata members; instead, use metadata layout as with everything
else.
Don't emit placeholders for field offsets and vtable entries,
since they were always null. Instead, calculate the final size
of class metadata at runtime using the size of the superclass
metadata and the number of immediate members, and only copy
this prefix from the template to the instantiated metadata,
zero-filling the rest.
For this to work with non-generic resilient classes and
non-generic subclasses of generic classes, we need a new
runtime entry point to relocate non-generic class metadata,
calculating its size at runtime using the same strategy.
We had some non-deterministic behavior where depending on
validation order, synthesized accessors would end up in
different places because we would sometimes just add them
at the end of the member list.
Now add the getter right after the storage, the setter
right after the getter and the materializeForSet right
after the setter.
This changes some test output where the declaration order
did not make sense before but should otherwise have no
functional effect.
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563
This flag is hopefully going away one day, and using it for testing
resilience is especially suspect. Just invoke the frontend directly
to build the necessary modules with -emit-module first.
Resilient classes are not fully implemented yet, and can cause
crashes at runtime; add a flag disabling them until the code is
done, to unblock standard library testing with resilience
enabled.
initialization in-place on demand. Initialize parent metadata
references correctly on struct and enum metadata.
Also includes several minor improvements related to relative
pointers that I was using before deciding to simply switch the
parent reference to an absolute reference to get better access
patterns.
Includes a fix since the earlier commit to make enum metadata
writable if they have an unfilled payload size. This didn't show
up on Darwin because "constant" is currently unenforced there in
global data containing relocations.
This patch requires an associated LLDB change which is being
submitted in parallel.
initialization in-place on demand. Initialize parent metadata
references correctly on struct and enum metadata.
Also includes several minor improvements related to relative
pointers that I was using before deciding to simply switch the
parent reference to an absolute reference to get better access
patterns.
from the witness tables for their associations rather than passing
them separately.
This drastically reduces the number of physical arguments required
to invoke a generic function with a complex protocol hierarchy. It's
also an important step towards allowing recursive protocol
constraints. However, it may cause some performance problems in
generic code that we'll have to figure out ways to remediate.
There are still a few places in IRGen that rely on recursive eager
expansion of associated types and protocol witnesses. For example,
passing generic arguments requires us to map from a dependent type
back to an index into the all-dependent-types list in order to
find the right Substitution; that's something we'll need to fix
more generally. Specific to IRGen, there are still a few abstractions
like NecessaryBindings that use recursive expansion and are therefore
probably extremely expensive under this patch; I intend to fix those
up in follow-ups to the greatest extent possible.
There are also still a few things that could be made lazier about
type fulfillment; for example, we eagerly project the dynamic type
metadata of class parameters rather than waiting for the first place
we actually need to do so. We should be able to be lazier about
that, at least when the parameter is @guaranteed.
Technical notes follow. Most of the basic infrastructure I set up
for this over the last few months stood up, although there were
some unanticipated complexities:
The first is that the all-dependent-types list still does not
reliably contain all the dependent types in the minimized signature,
even with my last patch, because the primary type parameters aren't
necessarily representatives. It is, unfortunately, important to
give the witness marker to the primary type parameter because
otherwise substitution won't be able to replace that parameter at all.
There are better representations for all of that, but it's not
something I wanted to condition this patch on; therefore, we have to
do a significantly more expensive check in order to figure out a
dependent type's index in the all-dependent-types list.
The second is that the ability to add requirements to associated
types in protocol refinements means that we have to find the *right*
associatedtype declaration in order to find the associated witness
table. There seems to be relatively poor AST support for this
operation; maybe I just missed it.
The third complexity (so far) is that the association between an
archetype and its parent isn't particularly more important than
any other association it has. We need to be able to recover
witness tables linked with *all* of the associations that lead
to an archetype. This is, again, not particularly well-supported
by the AST, and we may run into problems here when we eliminate
recursive associated type expansion in signatures.
Finally, it's a known fault that this potentially leaves debug
info in a bit of a mess, since we won't have any informaton for
a type parameter unless we actually needed it somewhere.
This prevents the linker from trying to emit relative relocations to locally-defined public symbols into dynamic libraries, which gives ld.so heartache.
This reverts commit 062d14b422.
Revert "Fix a swift argument initialization bug - swift argument should be initialized"
This reverts commit 273b149583.
This breaks DebugAssert as well as REPL builds. Revert to appease the bots while i
look further.
after argc and argv are initialized. rdar://24250684
I reordered the CHECK statements in some tests to make them pass.
I tested this on Darwin and Linux.
Change conformance records to reference NominalTypeDescriptors instead of
metadata patterns for resilient or generic types.
For a resilient type, we don't know if the metadata is constant or not,
so we can't directly reference either constant metadata or the metadata
template.
Also, whereas previously NominalTypeDescriptors would point to the
metadata pattern, they now point to the metadata accessor function.
This allows the recently-added logic for instantiating concrete types
by name to continue working.
In turn, swift_initClassMetadata_UniversalStrategy() would reach into
the NominalTypeDescriptor to get the pattern out, so that its bump
allocator could be used to allocate ivar tables. Since the pattern is
no longer available this way, we have to pass it in as a parameter.
In the future, we will split off the read-write metadata cache entry
from the pattern; then swift_initClassMetadata_UniversalStrategy() can
just take a pointer to that, since it doesn't actually need anything
else from the pattern.
Since Clang doesn't guarantee alignment for function pointers, I had
to kill the cute trick that packed the NominalTypeKind into the low
bits of the relative pointer to the pattern; instead the kind is now
stored out of line. We could fix this by packing it with some other
field, or keep it this way in case we add new flags later.
Now that generic metadata is instantiated by calling accessor functions,
this change removes the last remaining place that metadata patterns were
referenced from outside the module they were defined in. Now, the layout
of the metadata pattern and the behavior of swift_getGenericMetadata()
is purely an implementation detail of generic metadata accessors.
This patch allows two previously-XFAIL'd tests to pass.
Since that's somewhat expensive, allow the generation of meaningful
IR value names to be efficiently controlled in IRGen. By default,
enable meaningful value names only when generating .ll output.
I considered giving protocol witness tables the name T:Protocol
instead of T.Protocol, but decided that I didn't want to update that
many test cases.
Looks like subclassing classes with resiliently-sized properties works,
as long as the subclass is @_fixed_layout, so let's ensure that's tested.
We don't want @_fixed_layout classes to be a thing though, and we still
can't handle changes to the number of stored properties in a base class,
so a couple of tests are disabled until I land some more patches.