This nicely gathers all the layout information together in one contiguous bundle we can potentially emit independently for use in generic type layout. A step on the way to rdar://problem/19898165.
Swift SVN r30128
All llvm::Functions created during IRGen will have target-cpu and target-features
attributes if they are non-null.
Update testing cases to expect the attribute in function definition.
Add testing case function-target-features.swift to verify target-cpu and
target-features.
rdar://20772331
Swift SVN r28186
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
We want to use the reserved space in the metadata pattern for protocol conformance caching, and this link lets us find the metadata pattern from an instance of the generic type.
Swift SVN r22898
unexpected forematter from the superclass.
This requires a pretty substantial shift in the
generic-metadata allocation/initialization dance
because (1) we can't allocate class metadata without
knowing what the superclass is and (2) the offset
from the metadata cache entry to the address point is
no longer determined solely by the metadata pattern.
While I'm making invasive changes to metadata, fix
two race conditions in metadata creation. The first
is that we need to ensure that only one thread succeeds
at lazily creating a generic-metadata cache. The second
is that we need to ensure that only one thread actually
attempts to create a particular metadata; any others
should block until the metadata is successfully built.
This commit finishes rdar://17776354. LLDB will
need to adjust to the runtime-private metadata layout
changes.
Swift SVN r20537
lldb needs this to be able to tell how many generic parameters are actually needed to instantiate a generic type. Fixes <rdar://problem/17425286>.
Swift SVN r19573
for extra inhabitants.
For structs in particular, this eliminates a major source
of abstraction penatlies. For example, an optional struct
containing an object pointer is now represented the same
way as an optional object pointer, which is critical for
correctly importing CF types as Unmanaged<T>!.
In time, we should generalize this to consider all elements
as sources for extra inhabitants, as well as exploiting
spare bits in the representation, but getting the
single-element case right really provides the bulk of the
benefit.
This commit restores r17242 and r17243 with a fix to use
value witnesses that actually forward the right type metadata
down. We were already generating these value witnesses in
the dependent struct VWT pattern, but I was being too clever
and trying to use the underlying value witness directly.
Swift SVN r17267
This reverts commit r17243. We can't just forward the extra inhabitant payloads
from a field, because they will end up receiving metadata for the incorrect
type and crashing.
Swift SVN r17251
extra inhabitants.
Obviously this should eventually be generalized to
take from any element, but this is good enough to
give us zero-cost abstraction via single-field structs.
Contains some bugfixes for the tuple-extra-inhabitant
changes as well, because test coverage for optional
structs is obviously quite a bit richer than for
optional tuples.
All of this is leading towards unblocking IRGen for
importing CFStringRef as Unmanaged<CFString>!.
Swift SVN r17243
We really don't need to support individual objects
this large, much less more than 4 billion fields in
a single type.
Also rearrange the fields to bring the instance
size/alignment fields closer to the class header,
just for a minor locality win.
Swift SVN r16879
Add value witnesses for destroyArray, initializeArrayWithCopy, and initializeArrayWithTake{FrontToBack,BackToFront}, and fill out the runtime value witness table implementations. Stub out the IRGen ones for now.
Swift SVN r16772
As part of the nominal type descriptor for a struct or class, build a function that lazily generates the vector of type metadata for the fields of the nominal type given an instantiation of the type's metadata. To cache this for nongeneric types, produce a global variable we can stash the result in, or for generic types, reserve some space in the metadata template so that generic metadata instantiation naturally provides a space for every instance of the type.
Reapplying now that the missing Float80 builtin metadata is available.
Swift SVN r15260
As part of the nominal type descriptor for a struct or class, build a function that lazily generates the vector of type metadata for the fields of the nominal type given an instantiation of the type's metadata. To cache this for nongeneric types, produce a global variable we can stash the result in, or for generic types, reserve some space in the metadata template so that generic metadata instantiation naturally provides a space for every instance of the type.
Swift SVN r15256
-emit-llvm in Clang is a modifier on the -S and -c actions. In Swift,
it's a separate action equivalent to "-S -emit-llvm". Be less ambiguous.
Part of the migration to the new driver.
Swift SVN r13029
If there's no script-mode file in a module, don't produce a top_level_code SILFunction for it, and don't consider emitting an LLVM global_ctor for it. We should never emit static constructors from user code anymore.
Swift SVN r11644
Build a nominal type descriptor when we emit the metadata or generic metadata pattern for a nominal type, and put a reference into the formerly null slot in the struct or enum metadata. We need to make a place for them in class metadata; that'll come next.
Swift SVN r9492
- Change type attribute printing logic (in astprinter and the demangler)
to print in the new syntax
- Change the swift parser to only accept type attributes in the new syntax.
- Update canParseTypeTupleBody to lookahead over new-syntax type attributes.
- Update the testsuite to use the new syntax.
Swift SVN r9273
In the fill function for a generic struct metadata template, gather metadata for all of the field types, then invoke the runtime's new initStructMetadata function to initialize the field offset vector and vwtable.
Swift SVN r9123
When we have fixed offsets available for fields, emit them into the metadata or metadata pattern. If we don't, emit zero and leave it for the pattern fill function to resolve at runtime.
Swift SVN r9114
If a generic type has dynamic layout, the value witness table for its instances is dependent on its generic parameters for size and alignment. Instead of emitting a global symbol for the vwtable in these circumstances, embed the value witness table template in the generic metadata template so that both get instantiated in tandem by the runtime when the generic instance metadata is requested.
Swift SVN r7931
Use EmitPolymorphicParameters to extract the metadata for generic type parameters from the "self" argument to value witnesses so that they're available to the value witness implementation. This makes it so that the compiler no longer crashes when emitting the value witness table for a generic struct with dynamic size.
This temporarily breaks generic unions since we didn't properly implement generic argument lookup for union metadata yet. Fix coming shortly.
Swift SVN r7910