This adds the dllstorage annotations on the tests. This first pass gets
most of the IRGen tests passing on Windows (though has dependencies on
other changes). However, this allows for the changes to be merged more
easily as we cannot regress other platforms here.
* Remove RegisterPreservingCC. It was unused.
* Remove DefaultCC from the runtime. The distinction between C_CC and DefaultCC
was unused and inconsistently applied. Separate C_CC and DefaultCC are
still present in the compiler.
* Remove function pointer indirection from runtime functions except those
that are used by Instruments. The remaining Instruments interface is
expected to change later due to function pointer liability.
* Remove swift_rt_ wrappers. Function pointers are an ABI liability that we
don't want, and there are better ways to get nonlazy binding if we need it.
The fully custom wrappers were only needed for RegisterPreservingCC and
for optimizing the Instruments function pointers.
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563
Swift uses rt_swift_* functions to call the Swift runtime without using dyld's stubs. These functions are renamed to swift_rt_* to reduce namespace pollution.
rdar://28706212
This prevents the linker from trying to emit relative relocations to locally-defined public symbols into dynamic libraries, which gives ld.so heartache.
@inout parameters can be nocapture and dereferenceable. @in, @in_guaranteed, and indirected @direct parameters can be noalias, nocapture, and dereferenceable.
Swift SVN r29353
It's not worth burning more than three registers on a parameter, and doing so causes code size issues for large structs and enums. Make it so that values with more than three explosion members get passed indirectly, just like they get returned indirectly.
This time, modify emitPartialApplyForwarder not to attempt to 'tail' call the original function when indirect arguments get alloca'ed on the stack, which is UB, and don't use "byval", as suggested by John.
Swift SVN r29032
It's not worth burning more than three registers on a parameter, and doing so causes code size issues for large structs and enums. Make it so that values with more than three explosion members get passed indirectly, just like they get returned indirectly.
Swift SVN r29016
We have to guarantee memory safety in the presence of the user violating the
inout assumption. Claiming NoAlias for parameters that might alias is not
memory safe because LLVM will optimize based on that assumption.
Unfortunately, this means that llvm can't optimize arrays as aggressively. For
example, the load of array->buffer won't get hoisted out of loops (this is the
Sim2DArray regression below).
-O numbers (before/after):
CaptureProp 0.888365
Chars 1.09143
ImageProc 0.917197
InsertionSort 0.895204
JSONHelperDeserialize 0.909717
NSDictionaryCastToSwift 0.923466
Sim2DArray 0.76296
SwiftStructuresBubbleSort 0.897483
Continue emitting noalias for inout when compiling Ounchecked.
rdar://20041458
Swift SVN r25770
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
storage for arbitrary values.
A buffer doesn't provide any way to identify the type of
value it stores, and so it cannot be copied, moved, or
destroyed independently; thus it's not available as a
first-class type in Swift, which is why I've labelled
it Unsafe. But it does allow an efficient means of
opaquely preserving information between two cooperating
functions. This will be useful for the adjustments I
need to make to materializeForSet to support safe
addressors.
I considered making this a SIL type category instead,
like $@value_buffer T. This is an attractive idea because
it's generally better-typed. The disadvantages are that:
- it would need its own address_to_pointer equivalents and
- alloc_stack doesn't know what type will be stored in
any particular buffer, so there still needs to be
something opaque.
This representation is a bit gross, but it'll do.
Swift SVN r23903