We could assume usr/include belongs to header search paths. If a header
is located in a deeper location inside this directory, we need to print
the additional path components.
rdar://60857172
Because all metaclasses ultimately inherit from NSObject, instance
members of NSObject are also visible as static members of NSObject.
If the instance member is a property, we import the getter as an
ordinary static method, and not a static property.
The lazy loading path normally checks for the presence of alternate
decls with the same name, but it was failing to do this check if the
imported decl was a property and the alternate decl was attached to
the accessor and not the property itself.
This wasn't a problem until recently, because we weren't lazy loading
members of NSObject itself, since it had protocol conformances; now
that we are, this problem was exposed.
Fixes <rdar://problem/59170514>.
As part of this, we have to change the type export rules to
prevent `@convention(c)` function types from being used in
exported interfaces if they aren't serializable. This is a
more conservative version of the original rule I had, which
was to import such function-pointer types as opaque pointers.
That rule would've completely prevented importing function-pointer
types defined in bridging headers and so simply doesn't work,
so we're left trying to catch the unsupportable cases
retroactively. This has the unfortunate consequence that we
can't necessarily serialize the internal state of the compiler,
but that was already true due to normal type uses of aggregate
types from bridging headers; if we can teach the compiler to
reliably serialize such types, we should be able to use the
same mechanisms for function types.
This PR doesn't flip the switch to use Clang function types
by default, so many of the clang-function-type-serialization
FIXMEs are still in place.
Previously, -Xfrontend -prespecialize-generic-metadata had to be passed
in order for generic metadata to be prespecialized. Now it is
prespecialized unless -Xfrontend
-disable-generic-metadata-prespecialization is passed.
This reverts commit 8247525471. While
correct, it has uncovered several issues in existing code bases that
need to be sorted out before we can land it again.
Fixes rdar://problem/57846390.
This reverts commit e805fe486e, which reverted
the change earlier. The problem was caused due to a simultaneous change to some
code by the PR with parsing and printing for Clang function types (#28737)
and the PR which introduced Located<T> (#28643).
This commit also includes a small change to make sure the intersecting region
is fixed: the change is limited to using the fields of Located<T> in the
`tryParseClangType` lambda.
Today in far more cases we are using mangled strings to look up metadata at
runtime. If we do this for an objc class but for whatever reason we do not have
any other references to the class, the static linker will fail to link in the
relevant framework. The reason why this happens is that autolinking is treated
by the static linker as a hint that a framework may be needed rather than as a
"one must link against the framework". If there aren't any undefined symbols
needed by the app from that framework, the linker just will ignore the hint. Of
course this then causes the class lookup to fail at runtime when we use our
mangled name to try to lookup the class.
I included an Interpreter test as well as IRGen tests to make sure that we do
not regress here in the future.
NOTE: The test modifications here are due to my moving the ObjCClasses framework
out of ./test/Interpreters/Inputs => test/Inputs since I am using it in the
IRGen test along side the interpreter test.
rdar://56136123
Needed a couple of new lines to support Windows MSVC and Android AArch64
in the test.
Android ARMv7 is not running this test because the limitation of 64 bits
pointer size.
use getTypeByMangledName when abstract metadata state is requested
This can significantly reduce the code size of apps constructing deeply
nested types with conditional conformances.
Requires a new runtime.
rdar://57157619
I forgot about this part of the design when I was working on this. To ensure
that the whole design works as expected, I included a small end-to-end test
using an experimental design for simd that uses polymorphic builtins that test
this functionally.
NOTE: The experimental design is only intended to exercise the code functionally.
rdar://48248417
It is causing bots to fail.
* Revert "The __has_include(<os/system_version.h>) branch here wasn't quite right, we'll just use the dlsym one for now"
This reverts commit f824922456.
* Revert "Remove stdlib and runtime dependencies on Foundation and CF"
This reverts commit 3fe46e3f16.
rdar://54709269
When we generate code that asks for complete metadata for a fully concrete specific type that
doesn't have trivial metadata access, like `(Int, String)` or `[String: [Any]]`,
generate a cache variable that points to a mangled name, and use a common accessor function
that turns that cache variable into a pointer to the instantiated metadata. This saves a bunch
of code size, and should have minimal runtime impact, since the demangling of any string only
has to happen once.
This mostly just works, though it exposed a couple of issues:
- Mangling a type ref including objc protocols didn't cause the objc protocol record to get
instantiated. Fixed as part of this patch.
- The runtime type demangler doesn't correctly handle retroactive conformances. If there are
multiple retroactive conformances in a process at runtime, then even though the mangled string
refers to a specific conformance, the runtime still just picks one without listening to the
mangler. This is left to fix later, rdar://problem/53828345.
There is some more follow-up work that we can do to further improve the gains:
- We could improve the runtime-provided entry points, adding versions that don't require size
to be cached, and which can handle arbitrary metadata requests. This would allow for mangled
names to also be used for incomplete metadata accesses and improve code size of some generic
type accessors. However, we'd only be able to take advantage of the new entry points in
OSes that ship a new runtime.
- We could choose to always symbolic reference all type references, which would generally reduce
the size of mangled strings, as well as make runtime demangling more efficient, since it wouldn't
need to hit the runtime caches. This would however require that we be able to handle symbolic
references across files in the MetadataReader in order to avoid regressing remote mirror
functionality.