CocoaError.Code.fileReadUnknown conflicts with the CHECK-NOT line here.
We should be checking more specifically for UnknownBlock and UnknownCode
anyways.
rdar://53284293
This means that it can only have a guaranteed object as an operandand that we
validate that all uses of the result address of open_existential_box occur only
within the lifetime of said object's borrow scope.
Otherwise in call frames like the one in the test in this commit get unneeded
ARC traffic. We should never pessimize read only code that doesnt need
side-effects with side-effects if we can avoid it.
I am seeing this a bunch when I look at SIL from projects that use a lot of
protocols. Specifically, one has a sort of trampoline code that wraps a ref
counted object in an existential ref container (which from an ARC perspective
doesn't imply ownership) and then calls a method on it or passes it off to some
other code.
Because of this requirement, there is a copy/destroy that can not be eliminated
unless we can devirt/inline/eliminate the init_existential_ref box, inline
enough that the low level ARC optimizer can hit it. We shouldn't rely on such
properties if we do not need to.
In order to allow this, I've had to rework the syntax of substituted function types; what was previously spelled `<T> in () -> T for <X>` is now spelled `@substituted <T> () -> T for <X>`. I think this is a nice improvement for readability, but it did require me to churn a lot of test cases.
Distinguishing the substitutions has two chief advantages over the existing representation. First, the semantics seem quite a bit clearer at use points; the `implicit` bit was very subtle and not always obvious how to use. More importantly, it allows the expression of generic function types that must satisfy a particular generic abstraction pattern, which was otherwise impossible to express.
As an example of the latter, consider the following protocol conformance:
```
protocol P { func foo() }
struct A<T> : P { func foo() {} }
```
The lowered signature of `P.foo` is `<Self: P> (@in_guaranteed Self) -> ()`. Without this change, the lowered signature of `A.foo`'s witness would be `<T> (@in_guaranteed A<T>) -> ()`, which does not preserve information about the conformance substitution in any useful way. With this change, the lowered signature of this witness could be `<T> @substituted <Self: P> (@in_guaranteed Self) -> () for <A<T>>`, which nicely preserves the exact substitutions which relate the witness to the requirement.
When we adopt this, it will both obviate the need for the special witness-table conformance field in SILFunctionType and make it far simpler for the SILOptimizer to devirtualize witness methods. This patch does not actually take that step, however; it merely makes it possible to do so.
As another piece of unfinished business, while `SILFunctionType::substGenericArgs()` conceptually ought to simply set the given substitutions as the invocation substitutions, that would disturb a number of places that expect that method to produce an unsubstituted type. This patch only set invocation arguments when the generic type is a substituted type, which we currently never produce in type-lowering.
My plan is to start by producing substituted function types for accessors. Accessors are an important case because the coroutine continuation function is essentially an implicit component of the function type which the current substitution rules simply erase the intended abstraction of. They're also used in narrower ways that should exercise less of the optimizer.
Previously, we just banned cond_br from having non-trivial operands along
critical edges. This is a stronger condition that beyond simplifying ossa for
passes, also lets me remove the need for BranchPropagatedUser, simplifying the
linear lifetime checker.
This patch implements movable guaranteed scopes in ossa. This pattern is
currently not generated anywhere in the compiler, but my hope is to begin
emitting these in SemanticARCOpts. The idea is that these model true phi nodes
and thus can be used to fuse multiple guaranteed scopes into one using br
instructions. This is treated similarly to how owned instructions are forwarded
through /all/ terminators. This will enable us to use the SILSSAUpdater with
guaranteed arguments as well as enable the expression of sets of borrow scopes
that minimally jointly-dominate a guaranteed argument. This will enable us to
express +0 merge points like the following:
```
bb1:
%0a = begin_borrow %0 : $Klass
br bb3(%0a : $Klass)
bb2:
%1a = load_borrow %1 : $*Klass
br bb3(%1a : $Klass)
bb3(%2 : @guaranteed $Klass)
...
end_borrow %2 : $Klass
```
I describe below what the semantics of guaranteed block arguments were
previously, what they are now, and a little bit of interesting things from a
semantic perspective around implicit sub-scope users.
Before this patch in ossa, guaranteed block arguments had two different sets of
semantics:
1. Given a checked_cast_br or a switch_enum, the guaranteed block argument was
treated like a forwarding instruction. As such, the guaranteed argument's did
not require an end_borrow and its uses were validated as part of the use list
of the switch_enum/checked_cast_br operand's borrow introducer. It also was
not classified as a BorrowScopeValueIntroducer since it was not introducing a
new scope.
2. Given any other predecessor terminator, we treated the guaranteed argument as
a complete sub-scope of its incoming values. Thus we required the guaranteed
argument to have its lifetime eneded by an end_borrow and that all incoming
values of the guaranteed argument to come from a borrow introducer whose set
of jointly post-dominating end_borrows also jointly post-dominates the set of
end_borrows associated with the guaranteed argument itself. Consider the
following example:
```
bb0:
%1 = begin_borrow %foo : $Foo // (1)
%2 = begin_borrow %foo2 : $Foo2 // (2)
cond_br ..., bb1, bb2
bb1:
br bb3(%1 : $Foo)
bb2:
br bb3(%2 : $Foo)
bb3(%3 : @guaranteed $Foo)
...
end_borrow %3 : $Foo // (3)
end_borrow %2 : $Foo // (4)
end_borrow %1 : $Foo // (5)
...
```
Notice how due to SSA, (1) and (2) must dominate (4) and (5) and thus must
dominate bb3, preventing the borrows from existing within bb1, bb2.
This dominance property is actively harmful to expressivity in SIL since it
means that guaranteed arguments can not be used to express (without contortion)
sil code patterns where an argument is jointly-dominated by a minimal set of
guaranteed incoming values. For instance, consider the following SIL example:
```
bb0:
cond_br ..., bb1, bb2
bb1:
%0 = load [copy] %globalAddr : $Foo
br bb3(%0 : $Foo)
bb2:
%1 = copy_value %guaranteedFunctionArg : $Foo
br bb3(%1 : $Foo):
bb3(%2 : @owned $Foo):
apply %useFoo(%2)
destroy_value %2 : $Foo
```
As a quick proof: Assume the previous rules for guaranteed arguments. Then to
promote the load [copy] -> load_borrow and the copy_value to a begin_borrow, we
would need to place an end_borrow in bb3. But neither bb1 or bb2 dominates bb3,
so we would violate SSA dominance rules.
To enable SIL to express this pattern, we introduce a third rule for terminator
in ossa that applies only to branch insts. All other branches that obeyed the
previous rules (cond_br), still follow the old rule. This is not on purpose, I
am just being incremental and changing things as I need to. Specifically,
guaranteed arguments whose incoming values are defined by branch instructions
now act as a move on guaranteed values. The intuition here is that these
arguments are acting as true phis in an SSA sense and thus are just new names
for the incoming values. This implies since it is just a new name (not a
semantic change) that the guaranteed incoming value's guaranteed scopes should
be fused into one scope. The natural way to model this is by treating branch
insts as consuming guaranteed values. This then lets us express the example
above without using copies as follows:
```
bb0:
cond_br ..., bb1, bb2
bb1:
%0 = load_borrow %globalAddr : $Foo
br bb3(%0 : $Foo) // consumes %0 and acts as %0's end_borrow.
bb2:
// We need to introduce a new begin_borrow here since function
// arguments are required to never be consumed.
%1 = begin_borrow %guaranteedFunctionArg : $Foo
br bb3(%1 : $Foo) // consumes %1 and acts as %1's end_borrow
// %2 continues the guaranteed scope of %0, %1. This time fused with one name.
bb3(%2 : @guaranteed $Foo):
apply %useFoo(%2)
// End the lifetime of %2 (which implicitly ends the lifetime of %0, %1).
end_borrow %2 : $Foo
...
```
The main complication for users is that now when attempting to discover the set
of implicit users on an owned or guaranteed value caused by their usage as an
argument of a borrow introducer like begin_borrow. For those who are unaware, a
begin_borrow places an implicit requirement on its parent value that the parent
value is alive for the entire part of the CFG where this begin_borrow is
live. Previously, one could just look for the end_borrows of the
begin_borrow. Now one must additionally look for consuming branch insts. This is
because the original value that is being borrowed from must be alive over the
entire web of guaranteed values. That is the entire web of guaranteed values act
as a liveness requirement on the begin_borrow's operand.
The way this is implemented is given a use that we are validating, if the use is
a BorrowScopeOperand (1), we see if the borrow scope operand consumes the given
guaranteed scope and forwards it into a borrow scope introducer. If so, we add
the list of consuming uses of the borrow scope introducer to the worklist to
visit and then iterate.
In order to avoid working with cycles, for now, the ownership verifier bans
liveness requiring uses that have cycles in them. This still allows us to have
loop carried guaranteed values.
(1) A BorrowScopeOperand is a concept that represents an operand to a SIL
instruction that begins a guaranteed scope of some sort. All BorrowScopeOperand
are thus at a minimum able to compute a compile time the static region in which
they implicitly use their operands. NOTE: We do not require the scope to be
represented as a SILValue in the same function.
We achieve some nice benefit by introducing this. Specifically:
1. We can optimize the pattern I mentioned above. This is a common pattern in
many frameworks that want to return a default object if a computation fails
(with the default object usually being some sort of global or static
var). This will let us optimize that case when the global is a let global.
2. The SSA Updater can now be used with guaranteed values without needing to
introduce extra copies. This will enable predictable mem opts to introduce
less copies and for semantic arc opts to optimize the remaining copies that
PMO exposes but does not insert itself.
rdar://56720519
This enables me to simplify the code by not using the worklist for
non-guaranteed values (where it is not necessary). I think the non-guaranteed
value handling snuck in over time. I don't think in the non-guaranteed case we
/ever/ used the actual worklist functionality.
This also enabled me to safely, algebraically eliminate unnecessary variables
making the code easier to read (since less indirection).
Instead of interleaving typechecking and parsing
for SIL files, first parse the file for Swift
decls by skipping over any intermixed SIL decls.
Then we can perform type checking, and finally SIL
parsing where we now skip over Swift decls.
This is an intermediate step to requestifying the
parsing of a source file for its Swift decls.
For those who are unaware, a transformation terminator is a terminator like
switch_enum/checked_cast_br that always dominate their successor blocks. Since
they dominate their successor blocks by design and transform their input into
the args form, we can validate that they obey guaranteed ownership semantics
just like a forwarding instruction.
Beyond removing unnecessary code bloat, this also makes it significantly more
easier to optimize/work with transformation terminators when converting @owned
-> @guaranteed since we do not need to find end_borrow points when the owned
value is consumed.
<rdar://problem/59097063>
... including all SIL functions with are transitively referenced from such witness tables.
After the last devirtualizer run witness tables are not needed in the optimizer anymore.
We can delete witness tables with an available-externally linkage. IRGen does not emit such witness tables anyway.
This can save a little bit of compile time, because it reduces the amount of SIL at the end of the optimizer pipeline.
It also reduces the size of the SIL output after the optimizer, which makes debugging the SIL output easier.
This commit eliminates the need for mark uninitialized fixup by updating the
compiler so that we now emit:
```
%0 = alloc_box
%1 = mark_uninitialized %0
%2 = project_box %1
...
destroy_value %1
```
Instead of:
```
%0 = alloc_box
%1 = project_box %0
%2 = mark_uninitialized %1
...
destroy_value %0
```
Now that the first type of code is generated, I can change project_box to only
take guaranteed arguments. This will ensure that the OSSA ARC optimizer can
eliminate copies of boxes without needing to understand the usage of the
project_box.
More explicitly, this disallows guaranteed values to be passed to
mark_uninitialized. From the perspective of OSSA, it only makes sense for
mark_uninitialized to consume its incoming parameter since we want the
underlying allocated value to have its "entire" lifetime "funnel" through the
mark_uninitialized.
Since if the input value is none, we still accept it, all mark_uninitialized on
pointers will not be affected by this.
NOTE: Today, mark_uninitialized can not even accept a borrow parameter (we
severely restrict what parameters it can take). So I can not actually even write
a test for this today since the verifier will run after parsing and assert. But
from a modeling perspective and from the perspective of not creating confusion,
specifying the ownership of mark_uninitialized more explicitly is good.
SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
We have already been forwarding ownership in terms of ValueOwnership and
OwnershipUtils, I just had not setup certain parts of the ownership utils to
recognize mark_dependence as forwarding of guaranteed values. We did not hit
this before since we have not had been late enough in the pipeline to get
mark_dependence on guaranteed values.
In the future, we want to move to mark_dependence only taking guaranteed
values. This is a first step in that direction that at the same time allows me
to enable ownership lowering after diagnostics sooner since fixing the bigger
issue would be a relatively medium sized project.
Disabled checking in blocks which end up in an unreachable-instruction.
Inconsistent states are allowed in such blocks.
https://bugs.swift.org/browse/SR-11545
rdar://problem/55842518
This removes it from the AST and largely replaces it with AnyObject
at the SIL and IRGen layers. Some notes:
- Reflection still uses the notion of "unknown object" to mean an
object with unknown refcounting. There's no real reason to make
this different from AnyObject (an existential containing a
single object with unknown refcounting), but this way nothing
changes for clients of Reflection, and it's consistent with how
native objects are represented.
- The value witness table and reflection descriptor for AnyObject
use the mangling "BO" instead of "yXl".
- The demangler and remangler continue to support "BO" because it's
still in use as a type encoding, even if it's not an AST-level
Type anymore.
- Type-based alias analysis for Builtin.UnknownObject was incorrect,
so it's a good thing we weren't using it.
- Same with enum layout. (This one assumed UnknownObject never
referred to an Objective-C tagged pointer. That certainly wasn't how
we were using it!)
As an example consider a begin_borrow/end_borrow scope and a coroutine:
```
%0 = begin_borrow %...
...
%token = apply %coroutine(%0)
...
end_apply %token
...
end_borrow %0
```
With this change, we will validate that the end_borrow never enters the region
of code until the coroutine is actually finished executing (as shown by the
end_apply).
This just follows automagically from the recent work that I did with introducing
BorrowScopeIntroducingOperands.
I confirmed locally that the negative tests do not fail as expected when
visiting the destroys of the guaranteed parameters.
TLDR: This patch introduces a new kind of builtin, "a polymorphic builtin". One
calls it like any other builtin, e.x.:
```
Builtin.generic_add(x, y)
```
but it has a contract: it must be specialized to a concrete builtin by the time
we hit Lowered SIL. In this commit, I add support for the following generic
operations:
Type | Op
------------------------
FloatOrVector |FAdd
FloatOrVector |FDiv
FloatOrVector |FMul
FloatOrVector |FRem
FloatOrVector |FSub
IntegerOrVector|AShr
IntegerOrVector|Add
IntegerOrVector|And
IntegerOrVector|ExactSDiv
IntegerOrVector|ExactUDiv
IntegerOrVector|LShr
IntegerOrVector|Mul
IntegerOrVector|Or
IntegerOrVector|SDiv
IntegerOrVector|SRem
IntegerOrVector|Shl
IntegerOrVector|Sub
IntegerOrVector|UDiv
IntegerOrVector|Xor
Integer |URem
NOTE: I only implemented support for the builtins in SIL and in SILGen. I am
going to implement the optimizer parts of this in a separate series of commits.
DISCUSSION
----------
Today there are polymorphic like instructions in LLVM-IR. Yet, at the
swift and SIL level we represent these operations instead as Builtins whose
names are resolved by splatting the builtin into the name. For example, adding
two things in LLVM:
```
%2 = add i64 %0, %1
%2 = add <2 x i64> %0, %1
%2 = add <4 x i64> %0, %1
%2 = add <8 x i64> %0, %1
```
Each of the add operations are done by the same polymorphic instruction. In
constrast, we splat out these Builtins in swift today, i.e.:
```
let x, y: Builtin.Int32
Builtin.add_Int32(x, y)
let x, y: Builtin.Vec4xInt32
Builtin.add_Vec4xInt32(x, y)
...
```
In SIL, we translate these verbatim and then IRGen just lowers them to the
appropriate polymorphic instruction. Beyond being verbose, these prevent these
Builtins (which need static types) from being used in polymorphic contexts where
we can guarantee that eventually a static type will be provided.
In contrast, the polymorphic builtins introduced in this commit can be passed
any type, with the proviso that the expert user using this feature can guarantee
that before we reach Lowered SIL, the generic_add has been eliminated. This is
enforced by IRGen asserting if passed such a builtin and by the SILVerifier
checking that the underlying builtin is never called once the module is in
Lowered SIL.
In forthcoming commits, I am going to add two optimizations that give the stdlib
tool writer the tools needed to use this builtin:
1. I am going to add an optimization to constant propagation that changes a
"generic_*" op to the type of its argument if the argument is a type that is
valid for the builtin (i.e. integer or vector).
2. I am going to teach the SILCloner how to specialize these as it inlines. This
ensures that when we transparent inline, we specialize the builtin automatically
and can then form SSA at -Onone using predictable memory access operations.
The main implication around these polymorphic builtins are that if an author is
not able to specialize the builtin, they need to ensure that after constant
propagation, the generic builtin has been DCEed. The general rules are that the
-Onone optimizer will constant fold branches with constant integer operands. So
if one can use a bool of some sort to trigger the operation, one can be
guaranteed that the code will not codegen. I am considering putting in some sort
of diagnostic to ensure that the stdlib writer has a good experience (e.x. get
an error instead of crashing the compiler).
Even if a destroy_addr of a trivial type is a no-op, we must not end up with using such a value after a destroy_addr.
The fix is to also handle aggregate fields of trivial types in MemoryLifetime.
rdar://problem/55125020
The weak imported flag is now only set if the attribute is unconditionally
weak linked, which is the case when it or one of its parent contexts has a
@_weakLinked attribute.
To correctly handle weak linking based availability with serialized SIL
functions, we need to serialize the actual version tuple when the SIL function
was introduced. This is because the deployment target of the client app can
be older than the deployment target that the original module was built with.
Fixes <rdar://problem/52783668>.
...fulfilling the promised audit from 0747d9a339. No intended
functionality change /other/ than the order of already-unsorted lists.
This affected a number of SIL tests that relied on deserialization
order matching the original source order; I have no idea why the old
hash logic would make that the case. If we think that's a valuable
property, we should serialize a list of functions in addition to the
iterable table. (Maybe just in SIB mode?)
Specifically, we were preferring the always correct ownership kind specified by
the FunctionType and ignoring what we parsed from the argument. This PR changes
ossa to give a nice error when this is detected and fixes the places where this
tests were written incorrectly.
This provides a singular instruction for convert an unmanaged value to a ref,
then strong_retain it. I expanded the definition of UNCHECKED_REF_STORAGE to
include these copy like instructions. This instruction is valid in all SIL.
The reason why I am adding this instruction is that currently when we emit an
access to an unowned (unsafe) ivar, we use an unmanaged_to_ref and a strong
retain. This can look to the optimizer like a strong retain that can potentially
be optimized. By combining the two together into a new instruction, we can avoid
this potential problem since the pattern matching will break.
In analogy to the ownership verifier, the MemoryLifetimeVerifier checks the lifetime of memory locations.
It's based on MemoryLocations and MemoryDataflow, which are general utilities for analysing memory locations and calculating the lifetime of locations.
Memory locations are limited to addresses which are guaranteed to be not aliased, like @in/inout parameters or alloc_stack.
This flag is set by DefinitInitialization if the lifetime of the stored value is controlled dynamically.
If the flag is set, it's not (easily) possibly to statically calculate the lifetime of the stored value.