When we’re creating an associated type witness metadata accessor for
resilience reasons, but the associated type witness doesn’t involve any
type parameters, directly form the type metadata reference (and don’t
cache it).
While here… update all of the IRGen/SILGen test cases perturbed by the
introduction of resilient associated type access patterns.
I changed all of the places that used end_borrow_argument to use end_borrow.
NOTE: I discovered in the process of this patch that we are not verifying
guaranteed block arguments completely. I disabled the tests here that show this
bad behavior and am going to re-enable them with more tests in a separate PR.
This has not been a problem since SILGen does not emit any such arguments as
guaranteed today. But once I do the SILGenPattern work this will change.
rdar://33440767
This does not eliminate the entrypoints on SILBuilder yet. I want to do this in
two parts so that it is functionally easier to disentangle changing the APIs
above SILBuilder and changing the underlying instruction itself.
rdar://33440767
SE-0155 makes an empty associated value list in an enum element
declaration illegal. Warn about this in legacy Swift mode, and reject
it otherwise. This offers two fixes:
1) Remove the empty associated value list
2) Insert a 'Void' associated value
ConvertFunction and reabstraction thunks need this attribute. Otherwise,
there is no way to identify that withoutActuallyEscaping was used
to explicitly perform a conversion.
The destination of a [without_actually_escaping] conversion always has
an escaping function type. The source may have either an escaping or
@noescape function type. The conversion itself may be a nop, and there
is nothing distinctive about it. The thing that is special about these
conversions is that the source function type may have unboxed
captures. i.e. they have @inout_aliasable parameters. Exclusivity
requires that the compiler enforce a SIL data flow invariant that
nonescaping closures with unboxed captures can never be stored or
passed as an @escaping function argument. Adding this attribute allows
the compiler to enforce the invariant in general with an escape hatch
for withoutActuallyEscaping.
The information about whether a variable/property is initialized is lost in the
public interface, but is, unfortunately, required because it results in a symbol
for the initializer (if a class/struct `init` is inlined, it will call
initializers for properties that it doesn't initialize itself). This is
important to preserve for TBD file generation.
Using an attribute rather than just a bit on the VarDecl means this fits into
the scheme for module interfaces: textual/valid Swift.
This is how we originally controlled whether or not we printed out ownership
annotations when we printed SIL. Since then, I have changed (a few months ago I
believe) the ownership model eliminator to know how to eliminate these
annotations from the SIL itself. So this hack can be removed.
As an additional benefit, this will let me rename -enable-sil-ownership to
-enable-sil-ownership-verifier. This will I hope eliminate confusion around this
option in the short term while I am preparing to work on semantic sil again.
rdar://42509812
Constructors and methods had two parameter lists, one for self and one
for the formal parameters. Destructors only had one parameter list,
which introduced an annoying corner case.
The other side of #17404. Since we don't want to generate up front key path metadata for properties/subscripts with no withheld implementation details, the client should generate a key path component that can be used to represent a key path component based on its public interface.
* SILModule::isVisibleExternally utility for VarDecls.
* Fix the SIL parser so it doesn't drop global variable decls.
This information was getting lost in SIL printing/parsing.
Some passes rely on it. Regardless of whether passes should rely on it,
it is totally unacceptable for the SIL passes to have subtle differences
in behavior depending on the frontend mode. So, if we don't want passes
to rely on global variable decls, that needs to be enforced by the API
independent of how the frontend is invoked or how SIL is serialized.
* Use custom DemangleOptions to lookup global variable identifiers.
Validation of the input side of FunctionTypeRepr was previously being done in Sema because of expression folding. If we instead push the invariant that the input TypeRepr should always be a TupleTypeRepr into the AST a number of nice cleanups fall out:
- The SIL Parser no longer accepts Swift 2-style type declarations
- Parse is more cleanly able to reject invalid FunctionTypeReprs
- Clients of the AST can be assured the input type is always a TupleType so we can flush Swift 2 hacks
* [Parse] Minor fix for parsing SIL BuiltinInst.
The expected token in the diagnostic should be ")", not "(".
* [Parse] Add test for SIL BuiltinInst parse error.
* [Coverage] Parse SIL coverage maps for top-level code decls
This adds SIL printer/parser support for SILCoverageMaps representing
top-level code decls.
* [Coverage] Test lowering of ill-formed SIL profiling intrinsics
This adds a test case to exercise a path in IRGen which discards
ill-formed profiling intrinsics.
rdar://40133800 & r://39146527
This flag supports promoting KeyPath access violations to an error in
Swift 4+, while building the standard library in Swift 3 mode. This is
only necessary as long as the standard library continues to build in
Swift 3 mode. Once the standard library build migrates, it can all be
ripped out.
<rdar://problem/40115738> [Exclusivity] Enforce Keypath access as an error, not a warning in 4.2.
Mandatory pass will clean it up and replace it by a copy_block and
is_escaping/cond_fail/release combination on the %closure in follow-up
patches.
The instruction marks the dependence of a block on a closure that is
used as an 'withoutActuallyEscaping' sentinel.
rdar://39682865
To mark when a user of it is known to escape the value. This happens
with materializeForSet arguments which are captured and used in the
write-back. This means we need to keep the context alive until after
the write-back.
Follow-up patches to fully replace the PostponedCleanup hack in SILGen
by a mandatory SIL transformation pass to guarantee the proper lifetime
will use this flag to be more conservative when extending the lifetime.
The problem:
%pa = partial_apply %f(%some_context)
%cvt = convert_escape_to_noescape [not_guaranteed] [escaped] %pa
%ptr = %materialize_for_set(..., %cvt)
... write_back
... // <-- %pa needs to be alive until after write_back
This statically guarantees that the access has no inner conflict within
its own scope.
IRGen will turn this into a "nontracking" access in which an
exclusivity check is performed for conflicts on an outer scope. However,
unlike normal accesses the runtime does not record the access, and the
access will not be checked for subsequent conflicts.
end_unpaired_access [no_nested_conflict] is not currently
supported. Making a begin_unpaired_access [no_nested_conflict] requires
deleting the corresponding end_unpaired_access. Future runtimes
could support this for verification by storing inline data in the
valud buffer. However, the runtime can never assume that a
[no_nested_conflict] begin_unpaired_access will have a corresponding
end_unpaired_access call without adding a new ExclusivityFlag for
that purpose.
I am going to leave in the infrastructure around this just in case. But there is
no reason to keep this in the tests themselves. I can always just revert this
and I don't think merge conflicts are likely due to previous work I did around
the tooling for this.
We were hoping to use these to allow for plus_zero to be easily reverted. It
turns out that it took more tooling/time than we inticipated, so I am going back
to the old way of doing things. So remove the dead tests.
rdar://34222540
A public subscript might have generic indexes that aren't unconditionally Hashable, or might use indexes that are retroactively made Hashable, so the property descriptor on the implementer's side can't always resiliently provide this information to the final instantiated KeyPath.
Will be used to verify that withoutActuallyEscaping's block does not
escape the closure.
``%escaping = is_escaping_closure %closure`` tests the reference count. If the
closure is not uniquely referenced it prints out and error message and
returns true. Otherwise, it returns false. The returned result can be
used with a ``cond_fail %escaping`` instruction to abort the program.
rdar://35525730