This does not eliminate the entrypoints on SILBuilder yet. I want to do this in
two parts so that it is functionally easier to disentangle changing the APIs
above SILBuilder and changing the underlying instruction itself.
rdar://33440767
Protocol name mangling didn’t always go through a path that allowed the use
of standard substitutions. Enable standard substitutions for protocol name
manglings where they make sense.
Removes ~277k from the standard library binary size.
The SILGen testsuite consists of valid Swift code covering most language
features. We use these tests to verify that no unknown nodes are in the
file's libSyntax tree. That way we will (hopefully) catch any future
changes or additions to the language which are not implemented in
libSyntax.
I am going to leave in the infrastructure around this just in case. But there is
no reason to keep this in the tests themselves. I can always just revert this
and I don't think merge conflicts are likely due to previous work I did around
the tooling for this.
* Make Range conditionally a Collection
* Convert ClosedRange to conditionally a collection
* De-gyb Range/ClosedRange, refactoring some methods.
* Remove use of Countable{Closed}Range from stdlib
* Remove Countable use from Foundation
* Fix test errors and warnings resulting from Range/CountableRange collapse
* fix prespecialize test for new mangling
* Update CoreAudio use of CountableRange
* Update SwiftSyntax use of CountableRange
* Restore ClosedRange.Index: Hashable conformance
* Move fixed typechecker slowness test for array-of-ranges from slow to fast, yay
* Apply Doug's patch to loosen test to just check for error
Stop creating ImplicitlyUnwrappedOptional<T> so that we can remove it
from the type system.
Enable the code that generates disjunctions for Optional<T> and
rewrites expressions based on the original declared type being 'T!'.
Most of the changes supporting this were previously merged to master,
but some things were difficult to merge to master without actually
removing IUOs from the type system:
- Dynamic member lookup and dynamic subscripting
- Changes to ensure the bridging peephole still works
Past commits have attempted to retain as much fidelity with how we
were printing things as possible. There are some cases where we still
are not printing things the same way:
- In diagnostics we will print '?' rather than '!'
- Some SourceKit and Code Completion output where we print a Type
rather than Decl.
Things like module printing via swift-ide-test attempt to print '!'
any place that we now have Optional types that were declared as IUOs.
There are some diagnostics regressions related to the fact that we can
no longer "look through" IUOs. For the same reason some output and
functionality changes in Code Completion. I have an idea of how we can
restore these, and have opened a bug to investigate doing so.
There are some small source compatibility breaks that result from
this change:
- Results of dynamic lookup that are themselves declared IUO can in
rare circumstances be inferred differently. This shows up in
test/ClangImporter/objc_parse.swift, where we have
var optStr = obj.nsstringProperty
Rather than inferring optStr to be 'String!?', we now infer this to
be 'String??', which is in line with the expectations of SE-0054.
The fact that we were only inferring the outermost IUO to be an
Optional in Swift 4 was a result of the incomplete implementation of
SE-0054 as opposed to a particular design. This should rarely cause
problems since in the common-case of actually using the property rather
than just assigning it to a value with inferred type, we will behave
the same way.
- Overloading functions with inout parameters strictly by a difference
in optionality (i.e. Optional<T> vs. ImplicitlyUnwrappedOptional<T>)
will result in an error rather than the diagnostic that was added
in Swift 4.1.
- Any place where '!' was being used where it wasn't supposed to be
allowed by SE-0054 will now treat the '!' as if it were '?'.
Swift 4.1 generates warnings for these saying that putting '!'
in that location is deprecated. These locations include for example
typealiases or any place where '!' is nested in another type like
`Int!?` or `[Int!]`.
This commit effectively means ImplicitlyUnwrappedOptional<T> is no
longer part of the type system, although I haven't actually removed
all of the code dealing with it yet.
ImplicitlyUnwrappedOptional<T> is is dead, long live implicitly
unwrapped Optional<T>!
Resolves rdar://problem/33272674.
For Swift 3 / 4:
Deprecate the spelling "ImplicitlyUnwrappedOptional", emitting a warning
and suggesting "!" in places where they are allowed according to
SE-0054.
In places where SE-0054 disallowed IUOs but we continued to accept them
in previous compilers, emit a warning suggesting "Optional" or "?" as
an alternative depending on context and treat the IUO as an Optional,
noting this in the diagnostic.
For Swift 5:
Treat "ImplicitlyUnwrappedOptional" as an error, suggesting
"!" in places where they are allowed by SE-0054.
In places where SE-0054 disallowed IUOs, emit an error suggestion
"Optional" or "?" as an alternative depending on context.
Support for @noescape SILFunctionTypes.
These are the underlying SIL changes necessary to implement the new
closure capture ABI.
Note: This includes a change to function name mangling that
primarily affects reabstraction thunks.
The new ABI will allow stack allocation of non-escaping closures as a
simple optimization.
The new ABI, and the stack allocation optimization, also require
closure context to be @guaranteed. That will be implemented as the
next step.
Many SIL passes pattern match partial_apply sequences. These all
needed to be fixed to handle the convert_function that SILGen now
emits. The conversion is now needed whenever a function declaration,
which has an escaping type, is passed into a @NoEscape argument.
In addition to supporting new SIL patterns, some optimizations like
inlining and SIL combine are now stronger which could perturb some
benchmark results.
These underlying SIL changes should be merged now to avoid conflicting
with other work. Minor benchmark discrepancies can be investigated as part of
the stack-allocation work.
* Add a noescape attribute to SILFunctionType.
And set this attribute correctly when lowering formal function types to SILFunctionTypes based on @escaping.
This will allow stack allocation of closures, and unblock a related ABI change.
* Flip the polarity on @noescape on SILFunctionType and clarify that
we don't default it.
* Emit withoutActuallyEscaping using a convert_function instruction.
It might be better to use a specialized instruction here, but I'll leave that up to Andy.
Andy: And I'll leave that to Arnold who is implementing SIL support for guaranteed ownership of thick function types.
* Fix SILGen and SIL Parsing.
* Fix the LoadableByAddress pass.
* Fix ClosureSpecializer.
* Fix performance inliner constant propagation.
* Fix the PartialApplyCombiner.
* Adjust SILFunctionType for thunks.
* Add mangling for @noescape/@escaping.
* Fix test cases for @noescape attribute, mangling, convert_function, etc.
* Fix exclusivity test cases.
* Fix AccessEnforcement.
* Fix SILCombine of convert_function -> apply.
* Fix ObjC bridging thunks.
* Various MandatoryInlining fixes.
* Fix SILCombine optimizeApplyOfConvertFunction.
* Fix more test cases after merging (again).
* Fix ClosureSpecializer. Hande convert_function cloning.
Be conservative when combining convert_function. Most of our code doesn't know
how to deal with function type mismatches yet.
* Fix MandatoryInlining.
Be conservative with function conversion. The inliner does not yet know how to
cast arguments or convert between throwing forms.
* Fix PartialApplyCombiner.
Currently when function types like `(_: Int...) -> Void` are mangled
their names are going to include enclosing sugar BoundGenericType(Array),
which is not necessary and doesn’t play well with `AnyFunctionType::Param`
which strips the sugar away.
Resolves: rdar://problem/34941557
Conformance manglings, which are used for witness tables and related witness
thunks, mangle the generic signature of the conformance. Since conformances
also describe the conforming type, mangle the conformances's generic signature
relative to the conforming type's generic signature.
In practice, this means that we don't mangle any part of the generic signature
into a conformance mangling now, so we see a decent win: 2.3% smaller
trie and 6.4% smaller strings section in the standard library binary.
When conditional conformances land, we'll see some generic signatures
mangling again (for the additional requirements of the constrained
extension).
Now that we more tightly close formal accesses on lvalues, having LoadExpr and friends try to return a +0 loaded value is unsafe without deeper analysis, since the access will be closed immediately after the load and potentially free temporary memory that might be the only thing keeping the borrowed object alive. Fixes rdar://problem/32730865.
These instructions have the same semantics as the *ExistentialAddr instructions
but operate directly on the existential value, not its address.
This is in preparation for adding ExistentialBoxValue instructions.
The previous name would cause impossible confusion with "opaque existentials"
and "opaque existential boxes".