This will let me treat self during delegating initialization as an lvalue and
thus be emitted later without a scope. Thus I can simplify delegating
initialization slightly and land my argument scoping work.
rdar://33358110
conversions that reverse an implicit conversion done to align
foreign declarations with their imported types.
For example, consider an Objective-C method that returns an NSString*:
- (nonnull NSString*) foo;
This will be imported into Swift as a method returning a String:
func foo() -> String
A call to this method will implicitly convert the result to String
behind the scenes. If the user then casts the result back to NSString*,
that would normally be compiled as an additional conversion. The
compiler cannot simply eliminate the conversion because that is not
necessarily semantically equivalent.
This peephole recognizes as-casts that immediately reverse a bridging
conversion as a special case and gives them special power to eliminate
both conversions. For example, 'foo() as NSString' will simply return
the original return value. In addition to call results, this also
applies to call arguments, property accesses, and subscript accesses.
I tried to do a more complex fix, but it will take more time than I have now.
This change at least ensures that we maintain correctness both in terms of the
super types and in terms of the semantic sil verifier.
rdar://31880847
When evaluating if a call of a local function requires substitutions,
we checked if the immediate function being referenced captured
generic parameters, without checking if it transitively captured
generic parameters via other local functions it references.
Also, when calling accessors, we did not perform this check at all.
Fix both ordinary function calls and accessor calls to drop the
substitutions only if the *lowered* local captures say it is safe.
Finally, fix Sema to not consider substitutions in local function
references as generic parameter captures, since we now correctly
calculate the transitive closure of all captures.
Fixes <rdar://problem/32761305> and related issues.
When lowering a LoadExpr, SILGen constructs an LValue
and loads from it to produce an RValue.
If a LoadExpr contains another LoadExpr, the innermost
LoadExpr builds its own LValue, which is then loaded
to an RValue, and turned back into an LValue by creating
a single ValueComponent.
When evaluating an OpenExistentialExpr inside an LValue,
we record the base expression and evaluate it as an LValue
later when we encounter the corresponding OpaqueValueExpr.
The problem is when this is combined with a nested
LoadExpr, we might be inside of a different LValue than
the original LValue that contained the OpenExistentialExpr.
This would trigger an assertion, because the mapping from
OpaqueValueExprs to their base expressions was per-LValue;
instead, it needs to be per-SILGenFunction.
I put in a simple fixup pass (MarkUninitializedFixup) for staging purposes. I
don't expect it to be in tree long. I just did not feel comfortable fixing up in
1 commit all of the passes up to DI.
rdar://31521023
The goal here is to make the short demangling as short and readable as possible, also at the cost of omitting some information.
The assumption is that whenever the short demangling is displayed, there is a way for the user to also get the full demangled name if needed.
*) omit <where ...> because it does not give useful information anyway
Deserializer.deserialize<A where ...> () throws -> [A]
--> Deserializer.deserialize<A> () throws -> [A]
*) for multiple specialized functions only emit a single “specialized”
specialized specialized Constructible.create(A.Element) -> Constructible<A>
--> specialized Constructible.create(A.Element) -> Constructible<A>
*) Don’t print function argument types:
foo(Int, Double, named: Int)
--> foo(_:_:named:)
This is a trade-off, because it can lead to ambiguity if there are overloads with different types.
*) make contexts of closures, local functions, etc. more readable by using “<a> in <b>” syntax
This is also done for the full and not only for the simplified demangling.
Renderer.(renderInlines([Inline]) -> String).(closure #1)
--> closure #1 in Renderer.renderInlines
*) change spacing, so that it matches our coding style:
foo <A> (x : A)
--> foo<A>(x: A)
Also, add a third [serializable] state for functions whose bodies we
*can* serialize, but only do so if they're referenced from another
serialized function.
This will be used for bodies synthesized for imported definitions,
such as init(rawValue:), etc, and various thunks, but for now this
change is NFC.
Instead of appending a character for each substitution, we now prefix the substitution with the repeat count, e.g.
AbbbbB -> A5B
The same is done for known-type substitutions, e.g.
SiSiSi -> S3i
This significantly shrinks mangled names which contain large lists of the same type, like
func foo(_ x: (Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int))
rdar://problem/30707433
First, use the correct generic environment to compute the substituted
storage type. Substitutions derived from 'self' are not enough,
because we also want the archetypes of the generic subscript's
innermost generic parameters.
Also, use the method and witness_method calling conventions for the
materializeForSet callback, depending on if we have a protocol
witness or concrete implementation.
Since the materializeForSet callback is called with a more
abstract type at the call site than the actual function type
of the callback, we used to rely on these two SIL types being
ABI compatible:
@convention(thin) <Self : P, T, U) (..., Self.Type) -> ()
@convention(thin) <T, U> (..., Foo<T, U>.Type) -> ()
The IRGen lowering is roughly the following -- the call site
passes two unused parameters, but that's fine:
(..., Self.Type*, Self.Type*, Self.P*)
(..., Foo<T, U>.Type*)
However if the callback has its own generic parameters because
the subscript is generic, we might have SIL types like so,
@convention(thin) <Self : P, T, U, V) (..., Self.Type) -> ()
@convention(thin) <T, U, V> (..., Foo<T, U>.Type) -> ()
And the IRGen lowering is the following:
(..., Self.Type*, Self.Type*, Self.P*, V.Type*)
(..., Foo<T, U>.Type*, V.Type*)
The parameters no longer line up, because the caller still passes
the two discarded arguments, and type metadata for V cannot be
derived from the Self metadata so must be passed separately.
The witness_method calling convention is designed to solve this
problem; it puts the Self metadata and protocol conformance last,
so if you have these SIL types:
@convention(witness_method) <Self : P, T, U, V) (..., swiftself Self.Type) -> ()
@convention(witness_method) <T, U, V> (..., swiftself Foo<T, U>.Type) -> ()
The IRGen lowering is the following:
(..., Self.Type*, V.Type*, Self.Type*, Self.P*)
(..., Foo<T, U>.Type*, V.Type*, Self.Type*, unused i8*)
However, the problem is now that witness_method and thin functions
are not ABI compatible, because thin functions don't have a
distinguished 'self', which is passed differently in LLVM's swiftcc
calling convention:
@convention(witness_method) <Self : P, T, U, V) (..., Self.Type) -> ()
@convention(thin) <T, U, V> (..., Foo<T, U>.Type) -> ()
So instead of using 'thin' representation for the concrete callback
case, use 'method', which is essentially the same as 'thin' except if
the last parameter is pointer-size, it is passed as the 'self' value.
This makes everything work out.
In 74d979f0ac, the policy was changed
so that only value type accessors are ever marked transparent, and
not class accessors.
This was intended to fix a bug where inlining an accessor of an
Objective-C-derived class across module boundaries caused a linker
failure because the accessor referenced a field offset variable,
which has hidden visibility.
However, this also caused a performance regression for Swift native
classes. Bring back the old behavior for Swift native classes in
non-resilient modules.
Fixes <rdar://problem/29884727>.
new API called ManagedValue::unmanagedBorrow() for places where we were really trying to model
an exclusive borrow.
ManagedValue::unmanagedBorrow() is just the old implementation.
rdar://29791263
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Officially kick SILBoxType over to be "nominal" in its layout, with generic layouts structurally parameterized only by formal types. Change SIL to lower a capture to a nongeneric box when possible, or a box capturing the enclosing generic context when necessary.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
This ensures that ownership is properly propagated forward through the use-def
graph.
This was the work that was stymied by issues relating to SILBuilder performing
local ARC dataflow. I ripped out that local dataflow in 6f4e2ab and added a
cheap ARC guaranteed dataflow pass that performs the same optimization.
Also in the process of doing this work, I found that there were many SILGen
tests that were either pattern matching in the wrong functions or had wrong
CHECK lines (for instance CHECK_NEXT). I fixed all of these issues and also
expanded many of the tests so that they verify ownership. The only work I left
for a future PR is that there are certain places in tests where we are using the
projection from an original value, instead of a copy. I marked those with a
message SEMANTIC ARC TODO so that they are easy to find.
rdar://28685236
radar rdar://problem/28434323
SILGen has no reason to insert shadow copies for inout parameters any more. They cannot be captured. We still emit these copies. Sometimes deshadowing removes them, but sometimes it does not.
In this PR we just avoid emitting the copies and remove the deshadowing pass.
This PR chery-picked some of @dduan work and built on top of it.
Strict aliasing only applies to memory operations that use strict
addresses. The optimizer needs to be aware of this flag. Uses of raw
addresses should not have their address substituted with a strict
address.
Also add Builtin.LoadRaw which will be used by raw pointer loads.
When we override a property to add a didSet, Sema also synthesizes
a getter that simply delegates to the superclass property getter.
The synthesized getter is marked @_transparent. This means that if
the superclass getter is also transparent, but less visible than
the override, mandatory inlining will crash with an assertion.
To fix this, make sure SILGen does not emit a direct reference to
a superclass method if the current function is marked [fragile]
but the method is not.
Fixes <rdar://problem/26408353>.
The function pointer is a thin function and possibly polymorphic,
so it does not really have an AST type. Instead of pretending it has
an AST type, just return a RawPointer and remove some casts in the
process.
We don't want to perform substitutions when we call the materializeForSet
accessor itself, since the return value is a polymorphic thin function,
and its calling convention is not compatible with a concretely-typed
function value in the case where 'Self' is an abstract type parameter.
With this change, the materializeForSet declaration still has an AST type
for the callback in its return value, but since this AST type makes no
sense in reality it would be better to just return a RawPointer instead,
removing some unnecessary code from CodeSynthesis.cpp. This will be
cleaned up in a subsequent patch.
We don't want to perform substitutions when we call the materializeForSet
accessor itself, since the return value is a polymorphic thin function,
and its calling convention is not compatible with a concretely-typed
function value in the case where 'Self' is an abstract type parameter.
With this change, the materializeForSet declaration still has an AST type
for the callback in its return value, but since this AST type makes no
sense in reality it would be better to just return a RawPointer instead,
removing some unnecessary code from CodeSynthesis.cpp. This will be
cleaned up in a subsequent patch.
At the moment it is only possible to test the effects that SIL
optimization passes have on debug information by observing the
effects of a full .swift -> LLVM IR compilation. This change enable us
to write targeted testcases for single SIL optimization passes.
The new syntax is as follows:
sil-scope-ref ::= 'scope' [0-9]+
sil-scope ::= 'sil_scope' [0-9]+ '{'
sil-loc
'parent' scope-parent
('inlined_at' sil-scope-ref )?
'}'
scope-parent ::= sil-function-name ':' sil-type
scope-parent ::= sil-scope-ref
sil-loc ::= 'loc' string-literal ':' [0-9]+ ':' [0-9]+
Each instruction may have a debug location and a SIL scope reference
at the end. Debug locations consist of a filename, a line number, and
a column number. If the debug location is omitted, it defaults to the
location in the SIL source file. SIL scopes describe the position
inside the lexical scope structure that the Swift expression a SIL
instruction was generated from had originally. SIL scopes also hold
inlining information.
<rdar://problem/22706994>