to not drop optionals in memory all the time. We now generate a lot better code
for them in many cases. This makes generated SIL more readable and should help
-O0 perf.
This is progress towards <rdar://problem/20642198> SILGen shouldn't be dropping optionals into memory all the time
Swift SVN r28102
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
conservatively copying them.
Also, fix a number of issues with mutating getters that
I noticed while examining and changing this code. In
particular, stop relying on suppressing writeback scopes
during loads.
Fixes rdar://19002913, a bug where an unnecessary copy of
an array for a getter call left the array in a non-unique
state when a subsequent mutation occurred.
Swift SVN r23642
Use init_enum_data_addr and inject_enum_addr to construct optional values instead of the injection intrinsics, further simplifying -Onone IR. This not only avoids a call but also allows the frontend to emit optional payloads in-place in more cases, eliminating a lot of stack traffic.
Swift SVN r22549
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
Run whole-module checks at the end of perform Sema, specifically
TryAddFinal. After everything has been type checked, accessibility has
been provided, and we have had a chance to see any potential
overrides, we try to add the final attribute to class members.
This ends up de-virtualizing many functions, or rather they avoid the
vtable altogether. Thus, there are many test file changes. New test
file add_final.swift. Other tests updated to either reflect the
non-virtual call, or to have public added to them.
Swift SVN r20338
This causes a regression in error reporting where there are potential fixes: <rdar://problem/17741575> Other than that, everything works.
Swift SVN r20230
at the SIL level. Now, the referent type of a WeakStorageType is always
an optional type, instead of always being the underlying reference. This
allows us to represent both optional types. Before, both of these had the
same AST representation of WeakStorageType(T):
weak var x : T?
weak var x : T!
which doesn't work. Now we represent the optional type explicitly in the
AST and at SIL level. This also significantly simplifies a bunch of code
that was ripping off the optional type and resynthesizing it in other places,
and makes SILGen of weak pointers much more straight-forward by eliminating
the need for emitRefToOptional and emitOptionalToRef entirely (see the diffs
in test/SILGen/weak).
Weak pointers still have problems, but this is a big step forward.
Swift SVN r18312