This does not eliminate the entrypoints on SILBuilder yet. I want to do this in
two parts so that it is functionally easier to disentangle changing the APIs
above SILBuilder and changing the underlying instruction itself.
rdar://33440767
The SILGen testsuite consists of valid Swift code covering most language
features. We use these tests to verify that no unknown nodes are in the
file's libSyntax tree. That way we will (hopefully) catch any future
changes or additions to the language which are not implemented in
libSyntax.
We used to give witness thunks public linkage if the
conforming type and the protocol are public.
This is completely unnecessary. If the conformance is
fragile, the thunk should be [shared] [serialized],
allowing the thunk to be serialized into callers after
devirtualization.
Otherwise for private protocols or resilient modules,
witness thunks can just always be private.
This should reduce the size of compiled binaries.
There are two other mildly interesting consequences:
1) In the bridged cast tests, we now inline the witness
thunks from the bridgeable conformances, which removes
one level of indirection.
2) This uncovered a flaw in our accessibility checking
model. Usually, we reject a witness that is less
visible than the protocol; however, we fail to
reject it in the case that it comes from an
extension.
This is because members of an extension can be
declared 'public' even if the extended type is not
public, and it appears that in this case the 'public'
keyword has no effect.
I would prefer it if a) 'public' generated a warning
here, and b) the conformance also generated a warning.
In Swift 4 mode, we could then make this kind of
sillyness into an error. But for now, live with the
broken behavior, and add a test to exercise it to ensure
we don't crash.
There are other places where this "allow public but
ignore it, kinda, except respect it in some places"
behavior causes problems. I don't know if it was intentional
or just emergent behavior from general messiness in Sema.
3) In the TBD code, there is one less 'failure' because now
that witness thunks are no longer public, TBDGen does not
need to reason about them (except for the case #2 above,
which will probably require a similar workaround in TBDGen
as what I put into SILGen).
Instead of appending a character for each substitution, we now prefix the substitution with the repeat count, e.g.
AbbbbB -> A5B
The same is done for known-type substitutions, e.g.
SiSiSi -> S3i
This significantly shrinks mangled names which contain large lists of the same type, like
func foo(_ x: (Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int))
rdar://problem/30707433
Everything here should be NFC after the ownership model eliminator except for 1
change where translation of unowned parameters is made more
correct. Specifically:
1. In manageParam, we make it so that if we allow PlusZero, we begin an actual
begin_borrow, end_borrow sequence. We can do this unconditionally since if the
passed in SILValue is already borrowed, we just return early.
2. In TranslateArguments::translateSingle(), we used to handle owned, unowned,
and guaranteed parameters all the same way. This is of course incorrect. Now we
do the following:
a. If our final translated value is guaranteed, but we want an unowned or
owned parameter, then we perform a copyUnmanaged().
b. If our final translated value is unowned and our argument must be a
guaranteed value, then we first transition the unowned value to an owned value
using SILGen::emitManagedRetain() and then transition from owned to guaranteed
using a emitBeginBorrow().
c. If our final translated value is owned and our argument must be a
guaranteed value, then we perform an emitBeginBorrow().
3. In forwardFunctionArguments(), if our argument requires a guaranteed
argument, we begin a begin borrow sequence.
rdar://29791263
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
Canonical dependent member types are always based from a generic parameter, so we can use a more optimal mangling that assumes this. We can also introduce substitutions for AssociatedTypeDecls, and when a generic parameter in a signature is constrained by a single protocol, we can leave that protocol qualification out of the unsubstituted associated type mangling. These optimizations together shrink the standard library by 117KB, and bring the length of the longest Swift symbol in the stdlib down from 578 to 334 characters, shorter than the longest C++ symbol in the stdlib.
Swift SVN r32786
Right now, re-abstraction thunks are set up to convert values
as follows, where L is type lowering:
- OrigToSubst: L(origType, substType) -> L(substType)
- SubstToOrig: L(substType) -> L(origType, substType)
This assumes there's no AST-level type conversion, because
when we visit a type in contravariant position, we flip the
direction of the transform but we're still converting *to*
substType -- which will now equal to the type of the input,
not the type of the expected result!
This caused several problems:
- VTable thunk generation had a bunch of special logic to
compute a substOverrideType, and wrap the thunk result
in an optional, duplicating work done in the transform
- Witness thunk generation similarly had to handle the case
of upcasting to a base class to call the witness, and
casting the result of materializeForSet back to the right
type for properties defined on the base.
Now the materializeForSet cast sequence is a bit longer,
we unpack the returned tuple and do a convert_function
on the function, then pack it again -- before we would
unchecked_ref_cast the tuple, which is technically
incorrect since the tuple is not a ref, but IRGen didn't
seem to care...
To handle the conversions correctly, we add a third AST type
parameter to a transform, named inputType. Now, transforms
perform these conversions:
- OrigToSubst: L(origType, inputType) -> L(substType)
- SubstToOrig: L(inputType) -> L(origType, substType)
When we flip the direction of the transform while visiting
types in contravariant position, we also swap substType with
inputType.
Note that this is similar to how bridging thunks work, for
the same reason -- bridging thunks convert between AST types.
This is mostly just a nice cleanup that fixes some obscure
corner cases for now, but this functionality will be used
in a subsequent patch.
Swift SVN r31486
The only caveat is that:
1. We do not properly recognize when we have a let binding and we
perform a guaranteed dynamic call. In such a case, we add an extra
retain, release pair around the call. In order to get that case I will
need to refactor some code in Callee. I want to make this change, but
not at the expense of getting the rest of this work in.
2. Some of the protocol witness thunks generated have unnecessary
retains or releases in a similar manner.
But this is a good first step.
I am going to send a large follow up email with all of the relevant results, so
I can let the bots chew on this a little bit.
rdar://19933044
Swift SVN r27241
Replace the loop over all known protocols with a query into the
actual conformance lookup table, which more properly deals with
out-of-order conformance queries, inheritance of protocol
conformances, and conformance queries in multi-file situtations.
The SILGen test change is because we're no longer emitting redundant
conformances, while the slight diagnostic regression in
circular-inheritance cases is because we handle circular inheritance
very poorly throughout the compiler.
While not the end, this is a major step toward finishing
rdar://problem/18448811.
Swift SVN r26299
This lets us disambiguate the symbols for static and instance properties, and enables us to eventually leave the useless "self" type mangling out of method symbols. Fixes rdar://19012022 and dupes thereof, including crasher #1341.
Swift SVN r25111
This will have an effect on inlining into thunks.
Currently this flag is set for witness thunks and thunks from function signature optimization.
No change in code generation, yet.
Swift SVN r24998
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
rdar://problem/17198298
- Allow 'static' in protocol property and func requirements, but not 'class'.
- Allow 'static' methods in classes - they are 'class final'.
- Only allow 'class' methods in classes (or extensions of classes)
- Remove now unneeded diagnostics related to finding 'static' in previously banned places.
- Update relevant diagnostics to make the new rules clear.
Swift SVN r24260
as passing self by value, not by inout. This is the correct representation at
the AST level, and we now lower self references as the new @in_guaranteed
parameter convention. This allows SIL clients (like DI) to know that a nonmutating
protocol method does not mutate the pointee passed into the method.
This fixes:
<rdar://problem/19215313> let properties don't work with protocol method dispatch
<rdar://problem/15821762> Self argument of generic curried nonmutating instance methods is inout
Swift SVN r23864