We already ban all structs from declaring storage that comes from implementation-only imports. Until now we missed property wrappers, they were just dropped in deserialization.
Resolves rdar://problem/59403617
Going through sil-opt is going to print the contents of the module
without forcing the attribute which renders the test toothless. Now that
we have the multifile test, we're testing it can be round-tripped
through serialization anyhow.
Type erasure requires a circular construction by its very nature:
@_typeEraser(AnyProto)
protocol Proto { /**/ }
public struct AnyProto : Proto {}
If we eagerly resolve AnyProto, the chain of resolution steps that
deserialization must make goes a little something like this:
Lookup(Proto)
-> Deserialize(@_typeEraser(AnyProto))
-> Lookup(AnyProto)
-> DeserializeInheritedStuff(AnyProto)
-> Lookup(Proto)
This cycle could be broken if the order of incremental inputs was
such that we had already cached the lookup of Proto.
Resolve this cycle in any case by suspending the deserialization of the
type eraser until the point it's demanded by adding
ResolveTypeEraserTypeRequest.
rdar://61270195
Components of a requirement may be hidden behind an implementation-only
import. Attempts at deserializing them would fail on a 'module not
loaded' error. We only see failures in non-compilation paths, either in
indexing or with tools like ide-test as they try to deserialize
things that are private.
Remove the option to switch off nested types tables. In a world where
re-entrant direct lookup will cause deserialization to fail (or worse),
disabling these tables will only lead to further instability in the
compiler.
When a swift module is generated from a swift interface file, we must
remember to setup the nested types tables. Plumb the flag down from the
frontend options.
In the future, we must remove the ability to turn this off. There's
literally zero reason to have this be a configuration option anymore.
Resolves rdar://59202687 and its many, many dupes.
As part of this, we have to change the type export rules to
prevent `@convention(c)` function types from being used in
exported interfaces if they aren't serializable. This is a
more conservative version of the original rule I had, which
was to import such function-pointer types as opaque pointers.
That rule would've completely prevented importing function-pointer
types defined in bridging headers and so simply doesn't work,
so we're left trying to catch the unsupportable cases
retroactively. This has the unfortunate consequence that we
can't necessarily serialize the internal state of the compiler,
but that was already true due to normal type uses of aggregate
types from bridging headers; if we can teach the compiler to
reliably serialize such types, we should be able to use the
same mechanisms for function types.
This PR doesn't flip the switch to use Clang function types
by default, so many of the clang-function-type-serialization
FIXMEs are still in place.
Add another cross-cutting module configuration to the nested types table
search path. A module can have no overlay but also contain a nested
types table suitable for finding a given member name. UIKit is the
sharpest example of this state of affairs. UIKit currently defines an
overlay in Swift where we find some nested types. But it also defines
an inner module that has some other nested types tables.
Resolves rdar://58940989
To guard against the kind of complex failures seen in rdar://58690068,
improve this regression test with a copy of a shrunken version of
CocoaError.Code.
In that radar, CocoaError.Code was defined in one overlay and extended
in another translation unit. When deserialization encountered this, it
failed to search the overlay's nested type tables and fell through to
re-enter lookupDirect.
* Remove dead ModuleSourceInfoFilename parameters
These were never actually used; we might find a way to bring them back later.
* Introduce SerializedModuleBaseName
This is intended to replace the _n_ filename parameters that tend to get passed around in the SerializedModuleLoader classes.
* Manipulate currPath in SerializedModuleLoader less often
* Don’t pass raw paths around SerializedModuleLoader
Only pass base names.
* Regularize module file opening functions
SwiftSourceInfo files provide source location information for decls coming from
loaded modules. For most IDE use cases it either has an undesirable impact on
performance with no benefit (code completion), results in stale locations being
used instead of more up-to-date indexer locations (cursor info), or has no
observable effect (live diagnostics, which are filtered to just those with a
location in the primary file).
For non-IDE clients of SourceKit though, cursor info providing declaration
locations for symbols from other modules is useful, so add a global
configuration option (and a new request to set it) to control whether
.swiftsourceinfo files are loaded or not based on use case (they are loaded by
default).
SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
This warning is produced if you annotate an enum with `@frozen` but
build without library evolution enabled. The problem is that if you
only build with library evolution enabled for release builds, this
leaves you with a warning for all debug builds. The downside of this
change is that if you never build with library evolution, you may have
this unnecessary annotation without noticing.
* [TypeChecker] Enclosing stubs protocol note within editor mode
* [test] Removing note from test where there is no -diagnostics-editor-mode flag
* Formatting modified code
* [tests] Fixing tests under validation-tests
In some circumstances, a Swift declaration in module A will depend on
another declaration (usually from Objective-C) that can't be loaded,
for whatever reason. If the Swift declaration is *overriding* the
missing declaration, this can present a problem, because the way
methods are dispatched in Swift can depend on knowing the original
class that introduced the method. However, if the compiler can prove
that the override can still be safely invoked/used in all cases, it
doesn't need to worry about the overridden declaration being missing.
This is especially relevant for property accessors, because there's
currently no logic to recover from a property being successfully
deserialized and then finding out that an accessor couldn't be.
The decision of whether or not an override can be safely invoked
without knowledge of the base method is something to be cautious
about---a mistaken analysis would effectively be a miscompile. So up
until now, this was limited to one case: when a method is known to be
`@objc dynamic`, i.e. always dispatched through objc_msgSend. (Even
this may become questionable if we have first-class method references,
like we do for key paths.) This worked particularly well because the
compiler infers 'dynamic' for any overload of an imported Objective-C
method or accessor, in case it imports differently in a different
-swift-version and a client ends up subclassing it.
However...that inference does not apply if the class is final, because
then there are no subclasses to worry about.
This commit changes the test to be more careful: if the /missing/
declaration was `@objc dynamic`, we know that it can't affect ABI,
because either the override is properly `@objc dynamic` as well, or
the override has introduced its own calling ABI (in practice, a direct
call for final methods) that doesn't depend on the superclass. Again,
this isn't 100% correct in the presence of first-class methods, but it
does fix the issue in practice where a property accessor in a parent
class goes missing. And since Objective-C allows adding property
setters separately from the original property declaration, that's
something that can happen even under normal circumstances. Sadly.
This approach could probably be extended to constructors as well. I'm
a little more cautious about throwing vars and subscripts into the mix
because of the presence of key paths, which do allow identity-based
comparison of overrides and bases.
rdar://problem/56388950
This directory should be excluded during installation since the content is only
used for local development. swiftsourceinfo file is currently emitted to this directory.
For .swiftdoc file, we don't expose doc-comments for underscored symbols. But this
seems to be an unnecessary constraint on .swiftsourceinfo file since we put
these symbols in .swiftinterface files anyway.
After setting up the .swiftsourceinfo file, this patch starts to actually serialize
and de-serialize source locations for declaration. The binary format of .swiftsourceinfo
currently contains these three records:
BasicDeclLocs: a hash table mapping from a USR ID to a list of basic source locations. The USR id
could be retrieved from the following DeclUSRs record using an actual decl USR. The basic source locations
include a file ID and the results from Decl::getLoc(), ValueDecl::getNameLoc(), Decl::getStartLoc() and Decl::getEndLoc().
The file ID could be used to retrieve the actual file name from the following SourceFilePaths record.
Each location is encoded as a line:column pair.
DeclUSRS: a hash table mapping from USR to a USR ID used by location records.
SourceFilePaths: a hash table mapping from a file ID to actual file name.
BasicDeclLocs should be sufficient for most diagnostic cases. If additional source locations
are needed, we could always add new source location records without breaking the backward compatibility.
When de-serializing the source location from a module-imported decl, we calculate its USR, retrieve the USR ID
from the DeclUSRS record, and use the USR ID to look up the basic location list in the BasicDeclLocs record.
For more details about .swiftsourceinfo file: https://forums.swift.org/t/proposal-emitting-source-information-file-during-compilation
Fixes rdar://55560962 and https://bugs.swift.org/browse/SR-11495
This bug was caused because we'd fail to lookup C in B, because we
hadn't computed its type yet and therefore B is filtered from lookup.
Just remove the filter for interface type.