This restructures the indentation logic around producing a single IndentContext
for the line being indented. An IndentContext has:
- a ContextLoc, which points to a source location to indent relative to,
- a Kind, indicating whether we should align with that location exactly, or
with the start of the content on its containing line, and
- an IndentLevel with the relative number of levels to indent by.
It also improves the handling of:
- chained and nested parens, braces, square brackets and angle brackets, and
how those interact with the exact alignment of parameters, call arguments,
and tuple, array and dictionary elements.
- Indenting to the correct level after an incomplete expression, statement or
decl.
Resolves:
rdar://problem/59135010
rdar://problem/25519439
rdar://problem/50137394
rdar://problem/48410444
rdar://problem/48643521
rdar://problem/42171947
rdar://problem/40130724
rdar://problem/41405163
rdar://problem/39367027
rdar://problem/36332430
rdar://problem/34464828
rdar://problem/33113738
rdar://problem/32314354
rdar://problem/30106520
rdar://problem/29773848
rdar://problem/27301544
rdar://problem/27776466
rdar://problem/27230819
rdar://problem/25490868
rdar://problem/23482354
rdar://problem/20193017
rdar://problem/47117735
rdar://problem/55950781
rdar://problem/55939440
rdar://problem/53247352
rdar://problem/54326612
rdar://problem/53131527
rdar://problem/48399673
rdar://problem/51361639
rdar://problem/58285950
rdar://problem/58286076
rdar://problem/53828204
rdar://problem/58286182
rdar://problem/58504167
rdar://problem/58286327
rdar://problem/53828026
rdar://problem/57623821
rdar://problem/56965360
rdar://problem/54470937
rdar://problem/55580761
rdar://problem/46928002
rdar://problem/35807378
rdar://problem/39397252
rdar://problem/26692035
rdar://problem/33760223
rdar://problem/48934744
rdar://problem/43315903
rdar://problem/24630624
Previously, requests would fail silently by returning an empty struct
in the response.
With this change, responses will properly report fail with the internal
error.
Previously, requests would fail silently by returning an empty struct
in the response.
With this change, responses will properly report fail with the internal
error.
This allows us to dump it in the generated interface, though it's
still not syntax-highlighted. This is necessary for textual module
interfaces, but it's also just a longstanding request for Xcode's
"Generated Interface" / "Jump to Definition" feature.
rdar://problem/18675831
Stop creating ImplicitlyUnwrappedOptional<T> so that we can remove it
from the type system.
Enable the code that generates disjunctions for Optional<T> and
rewrites expressions based on the original declared type being 'T!'.
Most of the changes supporting this were previously merged to master,
but some things were difficult to merge to master without actually
removing IUOs from the type system:
- Dynamic member lookup and dynamic subscripting
- Changes to ensure the bridging peephole still works
Past commits have attempted to retain as much fidelity with how we
were printing things as possible. There are some cases where we still
are not printing things the same way:
- In diagnostics we will print '?' rather than '!'
- Some SourceKit and Code Completion output where we print a Type
rather than Decl.
Things like module printing via swift-ide-test attempt to print '!'
any place that we now have Optional types that were declared as IUOs.
There are some diagnostics regressions related to the fact that we can
no longer "look through" IUOs. For the same reason some output and
functionality changes in Code Completion. I have an idea of how we can
restore these, and have opened a bug to investigate doing so.
There are some small source compatibility breaks that result from
this change:
- Results of dynamic lookup that are themselves declared IUO can in
rare circumstances be inferred differently. This shows up in
test/ClangImporter/objc_parse.swift, where we have
var optStr = obj.nsstringProperty
Rather than inferring optStr to be 'String!?', we now infer this to
be 'String??', which is in line with the expectations of SE-0054.
The fact that we were only inferring the outermost IUO to be an
Optional in Swift 4 was a result of the incomplete implementation of
SE-0054 as opposed to a particular design. This should rarely cause
problems since in the common-case of actually using the property rather
than just assigning it to a value with inferred type, we will behave
the same way.
- Overloading functions with inout parameters strictly by a difference
in optionality (i.e. Optional<T> vs. ImplicitlyUnwrappedOptional<T>)
will result in an error rather than the diagnostic that was added
in Swift 4.1.
- Any place where '!' was being used where it wasn't supposed to be
allowed by SE-0054 will now treat the '!' as if it were '?'.
Swift 4.1 generates warnings for these saying that putting '!'
in that location is deprecated. These locations include for example
typealiases or any place where '!' is nested in another type like
`Int!?` or `[Int!]`.
This commit effectively means ImplicitlyUnwrappedOptional<T> is no
longer part of the type system, although I haven't actually removed
all of the code dealing with it yet.
ImplicitlyUnwrappedOptional<T> is is dead, long live implicitly
unwrapped Optional<T>!
Resolves rdar://problem/33272674.
As we do with "where" clauses, print the "inheritance" clauses of
protocols and associated type declarations using the requirement
signature of the protocol rather than the "inherited" list.
- Allow them to use substitutions.
- Consistently use 'a' as a mangling operator.
- For generic typealiases, include the alias as context for any generic
parameters.
Typealiases don't show up in symbol names, which always refer to
canonical types, but they are mangled for debug info and for USRs
(unique identifiers used by SourceKit), so it's good to get this
right.
Instead of appending a character for each substitution, we now prefix the substitution with the repeat count, e.g.
AbbbbB -> A5B
The same is done for known-type substitutions, e.g.
SiSiSi -> S3i
This significantly shrinks mangled names which contain large lists of the same type, like
func foo(_ x: (Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int))
rdar://problem/30707433
cfe9e6a3de removed calls to pre/post
printing of PrintStructureKind::GenericRequirement, so SourceKit DocInfo
requests started droping the markers for generic requirements, causing
some weirdness with documentation rendering and post-processing.
Restore the calls to printStructPre/Post when printing generic
requirements.
rdar://problem/30561880
If a documentation comment has a - LocalizationKey: field, strip it
out of the documentation body and report it in cursor/doc info with
the key "key.localization_key".
rdar://problem/30383329
Introduce an algorithm to canonicalize and minimize same-type
constraints. The algorithm itself computes the equivalence classes
that would exist if all explicitly-provided same-type constraints are
ignored, and then forms a minimal, canonical set of explicit same-type
constraints to reform the actual equivalence class known to the type
checker. This should eliminate a number of problems we've seen with
inconsistently-chosen same-type constraints affecting
canonicalization.
When enumerating requirements, always use the archetype anchors to
express requirements. Unlike "representatives", which are simply there
to maintain the union-find data structure used to track equivalence
classes of potential archetypes, archetype anchors are the
ABI-stable canonical types within a fully-formed generic signature.
The test case churn comes from two places. First, while
representatives are *often* the same as the archetype anchors, they
aren't *always* the same. Where they differ, we'll see a change in
both the printed generic signature and, therefore, it's
mangling.
Additionally, requirement inference now takes much greater
care to make sure that the first types in the requirement follow
archetype anchor ordering, so actual conformance requirements occur in
the requirement list at the archetype anchor---not at the first type
that is equivalent to the anchor---which permits the simplification in
IRGen's emission of polymorphic arguments.
- In functions called from resolveType(), consistently
use a Type() return value to indicate 'unsatisfied
dependency', and ErrorType to indicate failure.
- Plumb the unsatisfiedDependency callback through the
resolution of the arguments of BoundGenericTypes, and
also pass down the options.
- Before doing a conformance check on the argument of a
BoundGenericType, kick off a TypeCheckSuperclass request
if the type in question is a class. This ensures we don't
recurse through NominalTypeDecl::prepareConformanceTable(),
which wants to see a class with a valid superclass.
- The ResolveTypeOfDecl request was assuming that
the request was satisfied after calling validateDecl().
This is not the case when the ITC is invoked from a
recursive call to validateDecl(), hack this up by returning
*true* from isResolveTypeDeclSatisfied(); otherwise we
assert in satisfy(), and we can't make forward progress
in this case anyway.
- Fix a bug in cycle breaking; it seems if we don't invoke
the cycle break callback on all pending requests, we end
up looping forever in an outer call to satisfy().
- Remove unused TR_GlobalTypeAlias option.