For instance:
protocol P1 {
func foo()
}
protocol P2 : P1 {
func bar()
}
extension P2 {
func foo() {}
}
We report the foo() in P2's extension as the default implementation of foo() declared in P1.
Instead of appending a character for each substitution, we now prefix the substitution with the repeat count, e.g.
AbbbbB -> A5B
The same is done for known-type substitutions, e.g.
SiSiSi -> S3i
This significantly shrinks mangled names which contain large lists of the same type, like
func foo(_ x: (Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int))
rdar://problem/30707433
cfe9e6a3de removed calls to pre/post
printing of PrintStructureKind::GenericRequirement, so SourceKit DocInfo
requests started droping the markers for generic requirements, causing
some weirdness with documentation rendering and post-processing.
Restore the calls to printStructPre/Post when printing generic
requirements.
rdar://problem/30561880
In the following example, the two declarations should have
the same mangled type:
protocol P {
associatedtype P
}
func f1<T : P>(_: T) -> T.P where T.P == Int {}
func f2<T : P>(_: T) -> Int where T.P == Int {}
To ensure this is the case, canonicalize the entire
GenericFunctionType before taking it apart, instead of
canonicalizing structural components of it.
Rather than serializing the complete structure of all archetypes
(which is completely redundant), serialize a reference to their owning
generic environment as well as their interface type. The archetype
itself will be reconsituted by mapping the interface type into that
generic environment.
Introduce an algorithm to canonicalize and minimize same-type
constraints. The algorithm itself computes the equivalence classes
that would exist if all explicitly-provided same-type constraints are
ignored, and then forms a minimal, canonical set of explicit same-type
constraints to reform the actual equivalence class known to the type
checker. This should eliminate a number of problems we've seen with
inconsistently-chosen same-type constraints affecting
canonicalization.
When enumerating requirements, always use the archetype anchors to
express requirements. Unlike "representatives", which are simply there
to maintain the union-find data structure used to track equivalence
classes of potential archetypes, archetype anchors are the
ABI-stable canonical types within a fully-formed generic signature.
The test case churn comes from two places. First, while
representatives are *often* the same as the archetype anchors, they
aren't *always* the same. Where they differ, we'll see a change in
both the printed generic signature and, therefore, it's
mangling.
Additionally, requirement inference now takes much greater
care to make sure that the first types in the requirement follow
archetype anchor ordering, so actual conformance requirements occur in
the requirement list at the archetype anchor---not at the first type
that is equivalent to the anchor---which permits the simplification in
IRGen's emission of polymorphic arguments.
Previously, for an Objective-C class method declaration that could be
imported as init, we were making 4 decls:
1) The Swift 2 init
2) The Swift 2 class method decl (suppressing init formation)
3) The Swift 3 init (omitting needless words)
4) The Swift 3 class method decl (suppressing init formation and
omitting needless words)
Decls 1), 2), and 4) exist for diagnostics and redirect the user at
3). But, 4) does not correspond to any actual Swift version name and
producing it correctly would require the user to understand how
omit-needless-words and other importer magic operates. It provides
very limited value and more importantly gets in the way of future
Clang importer refactoring. We’d like to turn Decl importing into
something that is simpler and language-version parameterized, but
there is no real Swift version to correspond to decl 4).
Therefore we will be making the following decls:
1) The "raw" decl, the name as it would appear to the user if they
copy-pasted Objective-C code
2) The name as it appeared in Swift 2 (which could be an init)
3) The name as it appeared in Swift 3 (which could be an init and omit
needless words)
This aligns with the language versions we want to import as in the
future: raw, swift2, swift3, …, and current.
Note that swift-ide-test prunes decls that are unavailable in the
current Swift version, so the Swift 2 non-init decls are not printed
out, though they are still present. Tests were updated and expanded to
ensure this was still the case.
Store leading a trailing "trivia" around a token, such as whitespace,
comments, doc comments, and escaping backticks. These are syntactically
important for preserving formatting when printing ASTs but don't
semantically affect the program.
Tokens take all trailing trivia up to, but not including, the next
newline. This is important to maintain checks that statements without
semicolon separators start on a new line, among other things.
Trivia are now data attached to the ends of tokens, not tokens
themselves.
Create a new Syntax sublibrary for upcoming immutable, persistent,
thread-safe ASTs, which will contain only the syntactic information
about source structure, as well as for generating new source code, and
structural editing. Proactively move swift::Token into there.
Since this patch is getting a bit large, a token fuzzer which checks
for round-trip equivlence with the workflow:
fuzzer => token stream => file1
=> Lexer => token stream => file 2 => diff(file1, file2)
Will arrive in a subsequent commit.
This patch does not change the grammar.
TypeBase::getMemberSubstitutions(const DeclContext *dc) collects type
substitution information when a decl context can be treated as part of the
type definition. However, we call it without checking whether the
part-of-whole relationship really holds. This patch checks the
pre-condition before calling it to fix a crash.
There was a ton of complicated logic here to work around
two problems:
- Same-type constraints were not represented properly in
RequirementReprs, requiring us to store them in strong form
and parse them out when printing type interfaces.
- The TypeBase::getAllGenericArgs() method did not do the
right thing for members of protocols and protocol extensions,
and so instead of simple calls to Type::subst(), we had
an elaborate 'ArchetypeTransformer' abstraction repeated
in two places.
Rewrite this code to use GenericSignatures and
GenericFunctionType instead of old-school GenericParamLists
and PolymorphicFunctionType.
This changes the code completion and AST printer output
slightly. A few of the changes are actually fixes for cases
where the old code didn't handle substitutions properly.
A few others are subjective, for example a generic parameter
list of the form <T : Proto> now prints as <T where T : Proto>.
We can add heuristics to make the output whatever we want
here; the important thing is that now we're using modern
abstractions.
Switch printing off of using Function's ExtInfo for autoclosure and
escaping, and onto the ParameterTypeFlags, which let us do precise and
accurate context-sensitive printing of these parameter type
attributes. This fixes a huge list of issues where we were printing
@escaping for things like optional ObjC completion handlers, among
many others. We now correctly print @escaping in more places, and
don't print it when it's not correct.
Also updates the dumper to be consistent and give a good view of the
AST as represented in memory. Tests updated, more involved testing
coming soon.
Expand the scope of @objc inference for witnesses to encompass
witnesses that are in a different extension from that of the
conformance, including cases where one or the other is in the nominal
type declaration itself.
Fixes rdar://problem/26892526.
This patch fixes an importer problem which occurred for macros defined
in terms of two other macros which might not have been imported before.
For example, the macro CPU_TYPE_X86_64 (defined as CPU_TYPE_X86 |
CPU_ARCH_ABI64) in Foundation wasn't imported although the importing
logic was implemented.
importMacro is now called for each of the constituents before checking
the constant value.
I misled Argyrios into thinking we only had a wrapper for the name when
we also have one for the whole attribute. Fix that for @escaping and
@autoclosure.
rdar://problem/27867763
- Make sure VarDecls have an associated TypeLoc, like ParamDecls do, then use it for printing the VarDecl's type.
This is done by moving ParamDecl's TypeLoc up to the VarDecl.
This is useful for being able to display the parameter names of function types embedded in VarDecls.
- Use the result TypeLoc of functions for printing. This enables printing parameter names of function types embedded in return types.
- Make sure to annotate attributes while they are printed.
...to value types. Do continue bridging BOOL to Bool and such.
If the Objective-C API author went out of their way to indicate
ownership, they're probably using the reference semantics for
something. Give them the benefit of the doubt and leave the properties
declared using reference types. (It's not that they wouldn't work
correctly using Any, but that it's obscuring the intended interface.
And any /specific/ bridged value types /might/ actually cause issues
by causing copies.)
There is one wrinkle here involving declarations in the "accessibility
protocols" on Apple platforms, which sometimes use methods and
sometimes properties. The Swift compiler already deals with these by
always importing these as methods, so treat these like any other
methods and use value types when relevant.
rdar://problem/27526957
This flips the switch to have @noescape be the default semantics for
function types in argument positions, for everything except property
setters. Property setters are naturally escaping, so they keep their
escaping-by-default behavior.
Adds contentual printing, and updates the test cases.
There is some further (non-source-breaking) work to be done for
SE-0103:
- We need the withoutActuallyEscaping function
- Improve diagnostics and QoI to at least @noescape's standards
- Deprecate / drop @noescape, right now we allow it
- Update internal code completion printing to be contextual
- Add more tests to explore tricky corner cases
- Small regressions in fixits in attr/attr_availability.swift
Error domain enums are imported with synthesizing something like this:
struct MyError {
enum Code : Int32 {
case errFirst
case errSecond
}
static var errFirst: MyError.Code { get }
static var errSecond: MyError.Code { get }
}
The clang enum and enum constants are associated with both the
struct/nested enum, and the static vars/enum cases.
But we want unique USRs for the above symbols, so use the clang USR
for the enum and enum cases, and the Swift USR for the struct and vars.
rdar://27550967
and provide a fix-it to move it to the new location as referenced
in SE-0081.
Fix up a few stray places in the standard library that is still using
the old syntax.
Update any ./test files that aren't expecting the new warning/fix-it
in -verify mode.
While investigating what I thought was a new crash due to this new
diagnostic, I discovered two sources of quite a few compiler crashers
related to unterminated generic parameter lists, where the right
angle bracket source location was getting unconditionally set to
the current token, even though it wasn't actually a '>'.