Swift classes cannot meaningfully conform to NSObjectProtocol.
Inheriting from NSObject is the appropriate fix, so suggest that.
Fixes rdar://problem/32543753.
* [TypeChecker] Enclosing stubs protocol note within editor mode
* [test] Removing note from test where there is no -diagnostics-editor-mode flag
* Formatting modified code
* [tests] Fixing tests under validation-tests
Overload resolution performs a lookup rooted at a pattern binding's
initializer that scoops up the var decl bound by the pattern. This
forces it to validate the variable while type checking said variable's
initializer. The old answer to this problem was to skip validation
which returns a temporary ErrorType. We should patch lookup so it
doesn't consider these variables.
This is an amalgam of simplifications to the way VarDecls are checked
and assigned interface types.
First, remove TypeCheckPattern's ability to assign the interface and
contextual types for a given var decl. Instead, replace it with the
notion of a "naming pattern". This is the pattern that semantically
binds a given VarDecl into scope, and whose type will be used to compute
the interface type. Note that not all VarDecls have a naming pattern
because they may not be canonical.
Second, remove VarDecl's separate contextual type member, and force the
contextual type to be computed the way it always was: by mapping the
interface type into the parent decl context.
Third, introduce a catch-all diagnostic to properly handle the change in
the way that circularity checking occurs. This is also motivated by
TypeCheckPattern not being principled about which parts of the AST it
chooses to invalidate, especially the parent pattern and naming patterns
for a given VarDecl. Once VarDecls are invalidated along with their
parent patterns, a large amount of this diagnostic churn can disappear.
Unfortunately, if this isn't here, we will fail to catch a number of
obviously circular cases and fail to emit a diagnostic.
This was fixed by pull request #26174, but the test case there was
specific to property wrappers, while the fix also addresses issues
with other ambiguity name lookups such as protocol names in an
inheritance clause.
finalizeDecl() would kick off certain requests. This was necessary
before we had the long-lived type checker to ensure that requests
that required a type checker could be completed in time for SILGen.
It was also necessary to always emit diagnostics for declarations in
primary files.
Since we now have a long lived type checker, the first reason is no
longer valid, so we can move this work from finalizeDecl() to
typeCheckDecl(), where it will run for declarations in primary files
only.
To ensure that @objc selector conflict diagnostics still get emitted,
we also walk the superclass chain and force isObjC() to be computed
for each declaration in each superclass.
Under non-editor mode, the fixit for inserting protocol stubs is associated with a note
pointing to the missing protocol member declaration which could stay in a separate file from
the conforming type, leading to the behavior of rdar://51534405. This change checks if
the fixit is in a separate file and issues another note to carry the fixit if so.
rdar://51534405
While computing a type of member via `getTypeOfMemberReference`
let's delay opening generic requirements associated with function
type until after self constraint has been created, that would give
a chance for contextual types to get propagated and make mismatch
originated in generic requirements much easier to diagnose.
Consider following example:
```swift
struct S<T> {}
extension S where T == Int {
func foo() {}
}
func test(_ s: S<String>) {
s.foo()
}
```
`foo` would get opened as `(S<$T>) -> () -> Void` and contextual `self`
type is going to be `S<String>`, so applying that before generic requirement
`$T == Int` would make sure that `$T` gets bound to a contextual
type of `String` and later fails requirement constraint `$T == Int`.
This is much easier to diagnose comparing to `$T` being bound to
`Int` right away due to same-type generic requirement and then
failing an attempt to convert `S<String>` to `S<Int>` while simplifying
self constraint.
Resolves: rdar://problem/46427500
Resolves: rdar://problem/34770265
A number of tests exercise features only available in Apple OSes that
shipped with Swift 5.0 in the OS; this includes the following versions:
- macOS 10.14.4
- iOS 12.2
- tvOS 12.2
- watchOS 5.2
Previously these tests were restricted to running on macOS only, with
an explicit -target x86_64-apple-macosx10.14.4. To get better test
coverage, add a new %target-stable-abi-triple substitution which
expands to a triple with the correct OS version on all Apple platforms.
On non-Apple platforms, this is the same as %target-variant-triple,
but for now any test that uses this exercises Apple platform features
anyway.
One caveat is that since iOS 12.2 does not have a 32-bit slice, we
have to skip any tests that use -target %target-stable-abi-triple
on this platform. A new swift_stable_abi feature flag can be tested
with 'REQUIRES: swift_stable_abi'. To get maximum test coverage,
I split off a 'stable_abi' version of a few tests that build with both
an old and new deployment target. This allows the old deployment
target case to still be tested on 32-bit iOS.
If we haven't validated the declaration yet, the 'witnesses @objc
requirement' check would immediately fail. Move the validateDecl()
call to matchWitness() to fix this.
Fixes <rdar://problem/49482328>, <https://bugs.swift.org/browse/SR-10257>.
Validating a declaration can trigger conformance checking. If the conformance checker
comes across the same declaration as a candidate witness, it would fail to emit a
diagnostic. As a result we would then go onto SILGen, which would crash while emitting
a witness table with a missing entry.
Fixes <rdar://problem/45151902>.
- Many tests got broken because of two things:
- AST dump now outputs to stdout, but many tests expected stderr. This was a straightforward fix.
- Many tests call swift with specific parameters; specifically, many call `swift frontend` directly. This makes them go through the compiler in unexpected ways, and specifically it makes them not have primary files, which breaks the new AST dump implementation. This commit adds the old implementation as a fallback for those cases, except it dumps to `stdout` to maintain some consistence.
Finally, the `/test/Driver/filelists.swift` failed for unknown reasons. It seems its output now had some lines out of order, and fixing the order made the test pass. However, as the reasons why it failed are unknown, this fix might not have been a good idea. Corrections are welcome.
This makes diagnostics more verbose and accurate, because
it's possible to distinguish how many parameters there are
based on the message itself.
Also there are multiple diagnostic messages in a format of
`<descriptive-kind> <decl-name> ...` that get printed as
e.g. `subscript 'subscript'` if empty labels are omitted.
Whenever we visit a declaration via the DeclChecker, add it to the
list of declarations to finalize. This makes sure that we can centralize
the notion of “finalize for SILGen” and that it will be called for
everything in the source file being processed.
That is, if there's a problem with a witness, and the witness comes
from a different extension from the conformance (or the original type,
when the conformance is on an extension), put the main diagnostic on
the conformance, with a note on the witness. This involves some
shuffling and rephrasing of existing diagnostics too.
There's a few reasons for this change:
- More context. It may not be obvious why a declaration in file
A.swift needs to be marked 'public' if you can't see the conformance
in B.swift.
- Better locations for imported declarations. If you're checking a
conformance in a source file but the witness came from an imported
module, it's better to put the diagnostic on the part you have
control over. (This is especially true in Xcode, which can't display
diagnostics on imported declarations in the source editor.)
- Plays better with batch mode. Without this change, you can have
diagnostics being reported in file A.swift that are tied to a
conformance declared in file B.swift. Of course the contents of
A.swift also affect the diagnostic, but compiling A.swift on its
own wouldn't produce the diagnostic, and so putting it there is
problematic.
The change does in some cases make for a worse user experience,
though; if you just want to apply the changes and move on, the main
diagnostic isn't in the "right place". It's the note that has the info
and possible fix-it. It's also a slightly more complicated
implementation.