* Make _sanityCheck internal
* Make _debugPrecondition internal
* Make Optional._unsafelyUnwrappedUnchecked internal.
* Make _precondition internal
* Switch Foundation _sanityChecks to assertions
* Update file check tests
* Remove one more _debugPrecondition
* Update Optimization-with-check tests
* Improve label mismatch callback:
- Split "missing label" callback into 3 - missing, extraneous, incorrect (with typo(s));
- Allow label callbacks to indicate if it's a fatal error or not;
* Improve matching of the variadic parameters;
* Improve matching of the parameters with defaults;
* Try to look for an argument with matching label before fallback to
forced claming (if allowed).
If a type conditionally conforms to BidirectionalCollection, suffix's (and the
others) use of `index` ends up dispatching through `Collection.index` seemingly
because it is a protocol requirement. The intended function is
BidirectionalCollection's overloaded `index` (which _isn't_ connected to a
protocol requirement), which is called for non-conditional conformances. As
such, this is a work-around to stop code crashing.
Noticed in SR-8022, rdar://problem/41216424.
Modifies SILGen and the `Swift._diagnoseUnexpectedNilOptional` call to print a slightly different message for force unwraps which were implicitly inserted by the compiler for IUOs. The message is chosen based on the presence of certain flags in the `ForceValueExpr`, not on the type of the value being unwrapped.
- numericValue returns nil instead of .nan for non-numerics
- Remove small-string optimizations from _scalarName that failed on 32-bit archs
- Put case mappings back into U.S.Properties
- Added more sanity tests
These are all tests that would otherwise fail if the expression type
checker support for Swift 3 is removed.
I've moved some of the code from deleted Migrator tests into new
Constraints tests that verify that we do not support the constructs.
If we only emit an opaque reflection record for a struct or class, then we can't reflect its fields. We failed both to clear the "is reflectable" bit in the context descriptor for non-reflectable structs, and to check for the bit before trying to present a struct's fields as children in the runtime. rdar://problem/41274260
AnyHashable has numerous edge cases where two AnyHashable values compare equal but produce different hashes. This breaks Set and Dictionary invariants and can cause unexpected behavior and/or traps. This change overhauls AnyHashable's implementation to fix these edge cases, hopefully without introducing new issues.
- Fix transitivity of ==. Previously, comparisons involving AnyHashable values with Objective-C provenance were handled specially, breaking Equatable:
let a = (42 as Int as AnyHashable)
let b = (42 as NSNumber as AnyHashable)
let c = (42 as Double as AnyHashable)
a == b // true
b == c // true
a == c // was false(!), now true
let d = ("foo" as AnyHashable)
let e = ("foo" as NSString as AnyHashable)
let f = ("foo" as NSString as NSAttributedStringKey as AnyHashable)
d == e // true
e == f // true
d == f // was false(!), now true
- Fix Hashable conformance for numeric types boxed into AnyHashable:
b == c // true
b.hashValue == c.hashValue // was false(!), now true
Fixing this required adding a custom AnyHashable box for all standard integer and floating point types. The custom box was needed to ensure that two AnyHashables containing the same number compare equal and hash the same way, no matter what their original type was. (This behavior is required to ensure consistency with NSNumber, which has not been preserving types since SE-0170.
- Add custom AnyHashable representations for Arrays, Sets and Dictionaries, so that when they contain numeric types, they hash correctly under the new rules above.
- Remove AnyHashable._usedCustomRepresentation. The provenance of a value should not affect its behavior.
- Allow AnyHashable values to be downcasted into compatible types more often.
- Forward _rawHashValue(seed:) to AnyHashable box. This fixes AnyHashable hashing for types that customize single-shot hashing.
https://bugs.swift.org/browse/SR-7496
rdar://problem/39648819