A follow-up PR adds a flag to control an inline namespace that allows
symbols in libDemangling to be distinguished between the runtime and
the compiler. These dependencies ensure that the flag is plumbed
through for inclusions of Demangling headers that aren't already
covered by existing `target_link_libraries`.
LLVM svn r368826 changed the SectionRef::getName() interface to return an
Expected<StringRef> instead of filling out one that is passed to it.
Adjust accordingly.
This refactors DWARFImporter to become a part of ClangImporter, since
it needs access to many of its implementation details anyway. The
DWARFImporterDelegate is just another mechanism for deserializing
Clang ASTs and once we have a Clang AST, the processing is effectively
the same.
Updated uses of object::SectionRef::getContents() since it now returns
an Expected<StringRef> instead of modifying the one it's passed.
See also: git-svn-id:
https://llvm.org/svn/llvm-project/llvm/trunk@360892
91177308-0d34-0410-b5e6-96231b3b80d8
form SerializedModuleLoader into its own ModuleLoader class. (NFC-ish)
This gives better control over the order in which the various module
load mechanisms are applied.
lldb-moduleimport-test would only check for MachO and ELF object file
formats. However, Windows uses COFF object files. Add that to the list
of formats that we check. This allows us to inspect content built for
Windows.
There was only one remaining usage other than in testing tools.
Note that when a declaration mangling was passed in, the old entry
point would (try to) return the type of the declaration.
The new entry point no longer has this behavior. I changed the
bridging-header-first test to run lldb-moduleimport-test with
-decl-from-mangled instead of -type-from-mangled-old to preserve
the behavior of the test.
Also, I removed test/DebugInfo/DumpTypeFromMangledName.swift
completely. This test only covered a handful of cases, and a bunch
of them were declaration manglings rather than type manglings.
The new tests in test/TypeDecoder/ are much more comprehensive.
The -type-from-mangled flag now uses the new API. The -type-from-mangled-old flag
uses the old API, ide::getTypeFromMangledSymbolname().
For now, just change all existing tests to use the -type-from-mangled-old flag;
I'll be adding new tests for the new API shortly.
When debugging Objective-C or C++ code on Darwin, the debug info
collected by dsymutil in the .dSYM bundle is entirely
self-contained. It is possible to debug a program, set breakpoints and
print variables even without having the complete original source code
or a matching SDK available. With Swift, this is currently not the
case. Even though .dSYM bundles contain the binary .swiftmodule for
all Swift modules, any Clang modules that the Swift modules depend on,
still need to be imported from source to even get basic LLDB
functionality to work. If ClangImporter fails to import a Clang
module, effectively the entire Swift module depending on it gets
poisoned.
This patch is addressing this issue by introducing a ModuleLoader that
can ask queries about Clang Decls to LLDB, since LLDB knows how to
reconstruct Clang decls from DWARF and clang -gmodules producxes full
debug info for Clang modules that is embedded into the .dSYM budle.
This initial version does not contain any advanced functionality at
all, it merely produces an empty ModuleDecl. Intertestingly, even this
is a considerable improvement over the status quo. LLDB can now print
Swift-only variables in modules with failing Clang depenecies, and
becuase of fallback mechanisms that were implemented earlier, it can
even display the contents of pure Objective-C objects that are
imported into Swift. C structs obviously don't work yet.
rdar://problem/36032653
Rather than using the `LINK_LIBRARIES` option, use target_link_libraries
like clang does. Because these are all host tools, there is no name
mangling done for the libraries making this a no-op change.
Remove the unncessary link against the DebugInfoCodeView component. THe tools
seem to build without the dependency. The dependency issue in the linkage
seems to have been resolved.
LLDB needs the -swift-version because the -D__swift__ macro affects
how Clang modules are built. This currently has the really odd effect
that when debugging a Swift program that is not using the very latest
Swift version, the first "po" takes several seconds, because the
module cache needs to be rebuilt.
rdar://problem/40241256
This is in preparation for fetching informations directly from
the module instead of specifying them on the cmdline. It will
serve us better as it will mimick more accurately the way lldb
is behaving.
This refactoring moves the validation of the modules earlier
so that we can use the validation info to create the CompileUnit.
<rdar://problem/38867076>
We're going to infer all these informations from the module, but
that's a large refactoring task which I'm going to do next.
In the meanwhile, this should allow Adrian's work to be unblocked.
<rdar://problem/38720742>
Adrian already found and reported a bug, which I'm going to fix
in a later commit. Eventually this will go away, but in the meanwhile,
we should add test for this codepath.
<rdar://problem/38720742>
The only way we had to test this path was through swift-ide-test,
which takes an input a source file, instead of a serialized module.
This is not the scenario that lldb tests, hence this patch.
<rdar://problem/38323564>
Tiny start-up time optimization noticed while looking at how we do
PrettyStackTraceProgram. Also add PrettyStackTraceProgram to a few
more of our testing tools, via the new PROGRAM_START macro.
This has the effect of propagating the search path to the clang importer as '-iframework'.
It doesn't affect whether a swift module is treated as system or not, this can be done as follow-up enhancement.
The main action here is to sink the creation of the installation rule for all of
the swift host tools into this API. In a latter commit, I will use this API to
create include and build rules for add_swift_host_tool.
All of these cases seem to need the symbols from LLVM's new CodeView library to
link.
The specific executables are:
1. Swift Driver.
2. SIL Extract.
3. SIL Opt.
4. Swift IDE Test.
5. Swift LLVM Opt.
6. LLDB Module Import Test