Because we won’t be serializing this attribute, add custom diagnostics for the cases where:
- We add @_hasMissingDesignatedInits to an open class, which means subclasses won’t be able to inherit its inits
- We remove @_inheritsConvenienceInitializers, which means APIs are removed
If client's subclass provides an implementation of all of its superclass designated
initializers, it automatically inherits all of the superclass convenience initializers.
This means if a new designated init is added to the base class, the inherited
convenience init may be missing and cause breakage.
SR-11454
The framework baselines are installed at 'lib/swift/FrameworkABIBaseline' and the
tool is inside 'bin'. This patch teaches the executable to locate baselines
from the relative path.
In addition, this patch moves the stdlib ABI/API baselines to the canonical
location so we don't have to check the stability of the stdlib using a
different mechanism from other Swift frameworks.
ABI/API checker should check semantic differences of two modules.
Adhering too strictly to the actual ASTs could yield false positives. This
patch populates ObjC, Dynamic and Final to the attribute list if AST
APIs say so.
rdar://50217247
This change introduces a Json format change where we always print fully
qualified type names everywhere. This is beneficial for diagnosing purposes but
may not be ideal for generating migrator scripts. To resolve this conflict, the
patch also introduces a flag -migrator to opt-out fully qualified type names.
After the format change, we need to update the ABI and API baselines for the
Swift stdlib.
Removing accessors other than getter and setter can be ABI breaking. This
patch starts to formally include all accessor decls in the tree and diagnose
their removal. This change only applies to the ABI checker since we still
exclude accessors other than getter and setter when diagnosing source
compatibility.
Including accessors formally can also allow us to check the missing
of availability attributes for newly added accessors.
rdar://52063421
We used to use a Json format to capture the ABI/API detail of Swift modules to
walk-around module compatibility issues across different compiler versions. Since
Swift module now is in stable format, we can compare two swiftinterface files
directly without dumping the content into Json format.
For frameworks not shipping with OSs, the users should specify this flag
to avoid diagnosing some changes, such as the missing of OS availability
attributes.
New ABIs should have an @available attribute to describe the introducing
version. This patch teaches the tool to diagnose its missing.
Decls with @_AlwaysEmitIntoClient are excluded from the blaming lists since
they are essentially available all the time.
rdar://51089418
To incorporate extensions to types from other modules, the tool sometimes needs
to pull type declaration from external modules even though these modules
are not under checking. We need a flag to explicitly mark such case.
SDK conformance nodes include only protocol
`name` and `printedName`, both are demangled.
USR field of the protocol type is added, to be able
to uniquely identify conformances.
This commit adds a new type DynamicLookupInfo that provides information
about how a dynamic member lookup found a particular Decl. This is
needed to correctly handle KeyPath dynamic member lookups, but for now
just plumb it through everywhere.
ABI placeholders are decls with attribute '@available(macOS 9999, iOS
9999, tvOS 9999, watchOS 9999, *)'. The diagnostics phase could be
forgiving for ABI breakages on these decls since they are added
recently. This patch adds a new flag to the json file indicating whether
a declaration or a conformance is an ABI placeholder. The checking of
placeholder is transitive, meaning a decl is an ABI placeholder if its
decl context is one.
rdar://49502365
Protocol requirements may not necessarily add new entries to the witness table if
it's inherited from super protocol. This patch teaches the json dump to
include a flag indicating whether a protocol requirement requires new
witness table entry and diagnoses the change of such flag as ABI
breakages.
rdar://47657204
All diagnostics in the abi/api checker shares empty source location
and a screening info string as the first argument. This patch
adds a new forwarding function to avoid duplicating these common
logics.
Upon seeing an extension for a type outside the current module, the digester
creates a dummy type node and puts all the extensions’ members and conformances
in that type. This allows us to track new API endpoints that are retroactively
added.
Unfortunately, if there are no public members/conformances (only internal or
private ones), the type itself ends up in the SDK dump without any public
children. This causes an issue when you dump the SDK from a parseable
interface, where the internal extension was not printed.
Modeling ProtocolConformance as a standalone node allows us to keep
track of all type witnesses and re-use existing matching algorithm
to diagnose type witness changes.