To ensure SwiftSyntax calls a compatible parser library, this patch sets
up a C API that returns a constant string calculated during compilation time to indicate
the version of syntax node declarations. The same hash will be calculated
in the SwiftSyntax (client) side as well by using the same algorithm.
During runtime, SwiftSyntax will verify its hash value is identical to the
result of calling swiftparse_node_declaration_hash before actual
parsing happens.
This patch only sets the API up. The actual implementation of the
hashing algorithm will come later.
Doing a "direct ParsedSyntaxRecorder::record[some syntax]" call from the parser is not a good idea due to possibility
of being in a backtracking context when the call is made. Replace them with "ParsedSyntaxRecorder::make[some syntax]"
which will implicitly check for backtracking and create a recorded or deferred node accordingly.
Instead of creating syntax nodes directly, modify the parser to invoke an abstract interface 'SyntaxParseActions' while it is parsing the source code.
This decouples the act of parsing from the act of forming a syntax tree representation.
'SyntaxTreeCreator' is an implementation of SyntaxParseActions that handles the logic of creating a syntax tree.
To enforce the layering separation of parsing and syntax tree creation, a static library swiftSyntaxParse is introduced to compose the two.
This decoupling is important for introducing a syntax parser library for SwiftSyntax to directly access parsing.
`#assert` is a new static assertion statement that will let us write
tests for the new constant evaluation infrastructure that we are working
on. `#assert` works by lowering to a `Builtin.poundAssert` SIL
instruction. The constant evaluation infrastructure will look for these
SIL instructions, const-evaluate their conditions, and emit errors if
the conditions are non-constant or false.
This commit implements parsing, typechecking and SILGen for `#assert`.
Dynamic replacements are currently written in extensions as
extension ExtendedType {
@_dynamicReplacement(for: replacedFun())
func replacement() { }
}
The runtime implementation allows an implementation in the future where
dynamic replacements are gather in a scope and can be dynamically
enabled and disabled.
For example:
dynamic_extension_scope CollectionOfReplacements {
extension ExtentedType {
func replacedFun() {}
}
extension ExtentedType2 {
func replacedFun() {}
}
}
CollectionOfReplacements.enable()
CollectionOfReplacements.disable()
* Use 'parseAbstractFunctionBody()' for accessors as well. This
simplifies the implementation, and makes 'parseAbstractFunctionBody()'
the single point of parsing body of every 'AbstructFunctionDecl' types.
The methods were never executed because DEBUG was never defined in
normal builds and the only way to create nodes is through generated
factory methods which provide the same safety `validate` was supposed to
ensure at the interface level.
We cannot use unowned strings for token texts of incrementally parsed
syntax trees since the source buffer to which reused nodes refer will
have been freed for reused nodes. Always copying the token text whenever
OwnedString is passed is too expensive. A reference counted copy of the
string allows us to keep the token's string alive across incremental
parses while eliminating unnecessary copies.