This was mistakenly reverted in an attempt to fix buildbots.
Unfortunately it's now smashed into one commit.
---
Introduce @_specialize(<type list>) internal attribute.
This attribute can be attached to generic functions. The attribute's
arguments must be a list of concrete types to be substituted in the
function's generic signature. Any number of specializations may be
associated with a generic function.
This attribute provides a hint to the compiler. At -O, the compiler
will generate the specified specializations and emit calls to the
specialized code in the original generic function guarded by type
checks.
The current attribute is designed to be an internal tool for
performance experimentation. It does not affect the language or
API. This work may be extended in the future to add user-visible
attributes that do provide API guarantees and/or direct dispatch to
specialized code.
This attribute works on any generic function: a freestanding function
with generic type parameters, a nongeneric method declared in a
generic class, a generic method in a nongeneric class or a generic
method in a generic class. A function's generic signature is a
concatenation of the generic context and the function's own generic
type parameters.
e.g.
struct S<T> {
var x: T
@_specialize(Int, Float)
mutating func exchangeSecond<U>(u: U, _ t: T) -> (U, T) {
x = t
return (u, x)
}
}
// Substitutes: <T, U> with <Int, Float> producing:
// S<Int>::exchangeSecond<Float>(u: Float, t: Int) -> (Float, Int)
---
[SILOptimizer] Introduce an eager-specializer pass.
This pass finds generic functions with @_specialized attributes and
generates specialized code for the attribute's concrete types. It
inserts type checks and guarded dispatch at the beginning of the
generic function for each specialization. Since we don't currently
expose this attribute as API and don't specialize vtables and witness
tables yet, the only way to reach the specialized code is by calling
the generic function which performs the guarded dispatch.
In the future, we can build on this work in several ways:
- cross module dispatch directly to specialized code
- dynamic dispatch directly to specialized code
- automated specialization based on less specific hints
- partial specialization
- and so on...
I reorganized and refactored the optimizer's generic utilities to
support direct function specialization as opposed to apply
specialization.
Temporarily reverting @_specialize because stdlib unit tests are
failing on an internal branch during deserialization.
This reverts commit e2c43cfe14, reversing
changes made to 9078011f93.
This attribute can be attached to generic functions. The attribute's
arguments must be a list of concrete types to be substituted in the
function's generic signature. Any number of specializations may be
associated with a generic function.
This attribute provides a hint to the compiler. At -O, the compiler
will generate the specified specializations and emit calls to the
specialized code in the original generic function guarded by type
checks.
The current attribute is designed to be an internal tool for
performance experimentation. It does not affect the language or
API. This work may be extended in the future to add user-visible
attributes that do provide API guarantees and/or direct dispatch to
specialized code.
This attribute works on any generic function: a freestanding function
with generic type parameters, a nongeneric method declared in a
generic class, a generic method in a nongeneric class or a generic
method in a generic class. A function's generic signature is a
concatenation of the generic context and the function's own generic
type parameters.
e.g.
struct S<T> {
var x: T
@_specialize(Int, Float)
mutating func exchangeSecond<U>(u: U, _ t: T) -> (U, T) {
x = t
return (u, x)
}
}
// Substitutes: <T, U> with <Int, Float> producing:
// S<Int>::exchangeSecond<Float>(u: Float, t: Int) -> (Float, Int)
Let's say I am a good citizen and document my private symbols:
/** My TOP SECRET DOCUMENTATION */
private class Foo {
}
When I go to distribute the compiled binary, I find out my private
documentation is distributed as well:
$ swiftc test.swift -emit-module -module-name "test"
$ strings test.swiftdoc
My TOP SECRET DOCUMENTATION
/** My TOP SECRET DOCUMENTATION */
If a client can't use a symbol (e.g. it's private [or internal and not
-enable-testing]) don't emit the documentation for a symbol in the
swiftdoc.
Fixes: SR-762, rdar://21453624
The test coverage implements this truth table:
| visibility | -enable-testing | documentation? |
|------------|-----------------|----------------|
| private | no | ❌ |
| internal | no | ❌ |
| public | no | ✅ |
| private | yes | ❌ |
| internal | yes | ✅ |
| public | yes | ✅ |
Modified the existing comments test coverage to expect non-public
documentation not to be emitted.
Don't rely on existing comment structure
Refuse to emit comments if the decl cannot actually have one. To
accomplish this, we move `canHaveComment` into the Decl instance. It
must also be marked `const`, since one of its existing usages operates
on a const pointer.
Perform fewer checks when serializing the standard library.
It appears we were only using this to see if an associated type was
derived or defaulted. This code didn't mesh well with the other stuff
I was doing for default implementations, so I'd rather rip it out and
just rely on calling 'isImplicit' to check for derived associated
types instead.
Note that there's a small change of behavior -- if an associated type
is derived for one conformance, and then used as a witness in another,
we were previously only marking it as defaulted in the first one,
but now it is marked as defaulted in both. I do not believe this has
any meaningful consequences.
We did not serialize them because getting USR for extensions is tricky (USRs are
usually for value decls). This commit starts to make up an USR for an extension by combining
the extended nominal's USR with the USR of the first value member of the extension. We use
this made-up USR to associate doc comments when (de)serializing them.
There's an immediate need for this in the core libs, and we have most of the necessary pieces on hand to make it easy to implement. This is an unpolished initial implementation, with the following limitations, among others:
- It doesn't support bridging error conventions,
- It relies on ObjC interop,
- It doesn't check for symbol name collisions,
- It has an underscored name with required symbol name `@cdecl("symbol_name")`, awaiting official bikeshed painting.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
This is effectively fallout from 36a44cf3 where we switched representations of DeclID
and friends, but when I went to add ++ and -- to llvm::PointerEmbeddedInt I realized
it wasn't really intended to be mutated in place, i.e. it doesn't make sense to
increment a DeclID. Represent counters as plain integers instead that get converted
to DeclID when they are first used.
There's a group of methods in `DeclContext` with names that start with *is*,
such as `isClassOrClassExtensionContext()`. These names suggests a boolean
return value, while the methods actually return a type declaration. This
patch replaces the *is* prefix with *getAs* to better reflect their interface.
The two types are nearly identical, and Fixnum is only in the Swift branches of LLVM,
not in mainline LLVM.
I do want to add ++ to PointerEmbeddedInt and fix some of this ugliness, but that'll
have to go through LLVM review, so it might take a bit.
Since resilience is a property of the module being compiled,
not decls being accessed, we need to record which types are
resilient as part of the module.
Previously we would only ever look at the @_fixed_layout
attribute on a type. If the flag was not specified, Sema
would slap this attribute on every type that gets validated.
This is wasteful for non-resilient builds, because there
all types get the attribute. It was also apparently wrong,
and I don't fully understand when Sema decides to validate
which decls.
It is much cleaner conceptually to just serialize this flag
with the module, and check for its presence if the
attribute was not found on a type.
My recent changes added "resiliently-sized" global variables, where a
global in one module is defined to be of a type from another module,
and the type's size is not known at compile time.
This patch adds the other half of the equation: when accessing a
global variable defined by another module, we want to use accessors
since we want to resiliently change global variables from stored to
computed and vice versa.
The main complication here is that the synthesized accessors are not
part of any IterableDeclContext, and require some special-casing in
SILGen and Serialization. There might be simplifications possible here.
For testing and because of how the resilience code works right now,
I added the @_fixed_layout attribute to global variables. In the
future, we probably will not give users a way to promise that a
stored global variable will always remain stored; or perhaps we will
hang this off of a different attribute, once we finalize the precise
set of attributes exposed for resilience.
There's probably some other stuff with lazy and observers I need to
think about here; leaving that for later.
Introduce a new attribute, swift3_migration, that lets us describe the
transformation required to map a Swift 2.x API into its Swift 3
equivalent. The only transformation understood now is "renamed" (to
some other declaration name), but there's a message field where we can
record information about other changes. The attribute can grow
somewhat (e.g., to represent parameter reordering) as we need it.
Right now, we do nothing but store and validate this attribute.