Don't emit placeholders for field offsets and vtable entries,
since they were always null. Instead, calculate the final size
of class metadata at runtime using the size of the superclass
metadata and the number of immediate members, and only copy
this prefix from the template to the instantiated metadata,
zero-filling the rest.
For this to work with non-generic resilient classes and
non-generic subclasses of generic classes, we need a new
runtime entry point to relocate non-generic class metadata,
calculating its size at runtime using the same strategy.
This patch also performs minor refactoring to align syntax parsing
context with the right scope. We start to support the generic clauses
because they are necessary pieces to construct struct or
function syntax node.
When allocating metadata for a generic class we would copy
any prefix matter from the superclass metadata, if the
superclass metadata's address point was greater than our
address point.
While we may use prefix matter for resilient metadata
in the future, I don't believe just copying bytes like
this will prove useful.
This commit starts to support syntax nodes for @ attributes list for
declarations. These attributes don't include modifiers like "static" or
access keywords. Along with the function change, the commit refactors
some existing code to reduce duplication.
When building swift on macOS with long tests, the build would fail with
undefined references to these symbols. The undefined symbols were
expected to be present in swiftCore against which we link. However,
because the symbols are marked as internal, they would be dead stripped
before the dylib was constructed. As a result, we would end up with
undefined references to these symbols. Expose the additional internal
interfaces for now so that we can build the tests.
* libSyntax: Parse member access expression.
This patch uses createNodeInPlace from syntax parsing context API to
merge an expression with its suffix to create recursive nodes such as
member access expression.
Meanwhile, this patch breaks down a signed integer or float literal to a
prefix operator expression. This expression consists of two parts: an
operator and the following expression. This makes literals like "+1" or
"-1" no different from other prefix unary expressions such as "!true".
* [runtime] Clean up symbols in error machinery.
* [runtime] Clean up symbols in Foundation overlay.
* [runtime] Clean up symbols in collections and hashing.
* [runtime] Remove symbol controls from the Linux definition of swift_allocError.
* [tests] Add more stub functions for tests that link directly to the runtime.
This requires the witness table accessor function to gain two new parameters: a
pointer to an array of witness tables and their count. These are then passed down
to the instantiation function which reads them out of the array and writes them
into the newly-allocated witness table.
We use the count to assert that the number of conditional witness tables passed
in is what the protocol conformance expects, which is especially useful while
the feature is still experimental: it is a compiler/runtime bug if an incorrect
number is passed.
Alter the value metadata layout to use an absolute pointer for the
nominal type descriptor rather than a relative offset relative to the
complete type metadata. Although this is slightly less efficient in
terms of load times, this is more portable across different
environments. For example, PE/COFF does not provide a cross-section
relative offset relocation. Other platform ports are unable to provide
a 64-bit relative offset encoding.
Given that the value witness table reference in the value metadata is
currently an absolute pointer, this page is most likely going to be
dirtied by the loader.
StructMetadata is now two words that the parent pointer is gone.
We need to add our own storage for the generic arguments, instead
of smashing the location where the parent pointer used to be.
My previous fix was incorrect because it would set the template
size to two words (thus we no longer read past the end of the
template) but in turn we would write past the end of the
instantiated metadata.
We no longer need this for anything, so remove it from metadata
altogether. This simplifies logic for emitting type metadata and
makes type metadata smaller.
We still pass the parent metadata pointer to type constructors;
removing that is a separate change.
On architectures where the calling convention uses the same argument register as
return register this allows the argument register to be live through the calls.
We use LLVM's 'returned' attribute on the parameter to facilitate this.
We used to perform this optimization via an optimization pass. This was ripped
out some time ago around commit 955e4ed652.
By using LLVM's 'returned' attribute on swift_*retain, we get the same
optimization from the LLVM backend.
The previous code actually had a "semantic" error as well as a parse
error, so depending on the timing we could get 2 diagnosticsl
rdar://problem/34373697
I found this by inspection (also, I found that newer
clang versions also warns for this under -Wall). While here,
convert to static_cast<> for a more idiomatic C++.
This patch allows Parser to generate a refined token stream to satisfy tooling's need. For syntax coloring, token stream from lexer is insufficient because (1) we have contextual keywords like get and set; (2) we may allow keywords to be used as argument labels and names; and (3) we need to split tokens like "==<". In this patch, these refinements are directly fulfilled through parsing without additional heuristics. The refined token vector is optionally saved in SourceFile instance.
* Unify the capitalization across all user-visible error messages (fatal errors, assertion failures, precondition failures) produced by the runtime, standard library and the compiler.
* Update some more tests to the new expectations.