The old TypeAttributes reprsentation wasn't too bad for a small number of
simple attributes. Unfortunately, the number of attributes has grown over
the years by quite a bit, which makes TypeAttributes fairly bulky even at
just a single SourceLoc per attribute. The bigger problem is that we want
to carry more information than that on some of these attributes, which is
all super ad hoc and awkward. And given that we want to do some things
for each attribute we see, like diagnosing unapplied attributes, the linear
data structure does require a fair amount of extra work.
I switched around the checking logic quite a bit in order to try to fit in
with the new representation better. The most significant change here is the
change to how we handle implicit noescape, where now we're passing the
escaping attribute's presence down in the context instead of resetting the
context anytime we see any attributes at all. This should be cleaner overall.
The source range changes around some of the @escaping checking is really a
sort of bugfix --- the existing code was really jumping from the @ sign
all the way past the autoclosure keyword in a way that I'm not sure always
works and is definitely a little unintentional-feeling.
I tried to make the parser logic more consistent around recognizing these
parameter specifiers; it seems better now, at least.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Using a virutal output backend to capture all the outputs from
swift-frontend invocation. This allows redirecting and/or mirroring
compiler outputs to multiple location using different OutputBackend.
As an example usage for the virtual outputs, teach swift compiler to
check its output determinism by running the compiler invocation
twice and compare the hash of all its outputs.
Virtual output will be used to enable caching in the future.
Provide ASTWalker with a customization point to specify whether to
check macro arguments (which are type checked but never emitted), the
macro expansion (which is the result of applying the macro and is
actually emitted into the source), or both. Provide answers for the
~115 different ASTWalker visitors throughout the code base.
Fixes rdar://104042945, which concerns checking of effects in
macro arguments---which we shouldn't do.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
Replace the use of bool and pointer returns for
`walkToXXXPre`/`walkToXXXPost`, and instead use
explicit actions such as `Action::Continue(E)`,
`Action::SkipChildren(E)`, and `Action::Stop()`.
There are also conditional variants, e.g
`Action::SkipChildrenIf`, `Action::VisitChildrenIf`,
and `Action::StopIf`.
There is still more work that can be done here, in
particular:
- SourceEntityWalker still needs to be migrated.
- Some uses of `return false` in pre-visitation
methods can likely now be replaced by
`Action::Stop`.
- We still use bool and pointer returns internally
within the ASTWalker traversal, which could likely
be improved.
But I'm leaving those as future work for now as
this patch is already large enough.
ABI descriptors should always be emitted as sidecars for library-evolution-enabled modules.
However, generating these files requires traversing the entire module (like indexing), which may
hit additional deserialization issues. To unblock builds, this patch introduces a flag to skip
the traversing logic so that we emit an empty ABI descriptor file. The empty file serves as
a placeholder so that build system doesn't need to know the details.
Emitted at the emit-module step, ABI descriptor is of an entensible JSON format. This patch sets
up a segment in the file to also keep track of all compile-time constant values for other tools
to consume. As the initial step, we only keep track of string literals in the source files.
The RequirementSignature generalizes the old ArrayRef<Requirement>
which stores the minimal requirements that a conforming type's
witnesses must satisfy, to also record the protocol typealiases
defined in the protocol.
The first generic parameter of an `OpaqueTypeDecl` was still being used
as the "underlying" interface type of the opaque type, which is
incorrect for both structural and named opaque result types. Eliminate
this notion, because the (declared) interface type already has the
correct structure.
Only ABI checking depended on the old "underlying" type, so rework it to
instead substitute into properly for structural opaque result types as
well.
Deserialization required a small adjustment to eliminate a cycle
because the interface type of an `OpaqueTypeDecl` involves opaque
archetype types, which reference the declaration itself... so
deserialize the interface type later, now that it's correct.
Instead of checking that the stdlib can be loaded in a variety of places, check it when setting up the compiler instance. This required a couple more checks to avoid loading the stdlib in cases where it’s not needed.
To be able to differentiate stdlib loading failures from other setup errors, make `CompilerInstance::setup` return an error message on failure via an inout parameter. Consume that error on the call side, replacing a previous, more generic error message, adding error handling where appropriate or ignoring the error message, depending on the context.
This cleans up 90 instances of this warning and reduces the build spew
when building on Linux. This helps identify actual issues when
building which can get lost in the stream of warning messages. It also
helps restore the ability to build the compiler with gcc.
Previously, we use USR as a delegate for mangled name. However, USR won't incorporate name changes made
by attributes like @_silgen_name. Instead, we should add a dedicated field for canonical mangled names.
rdar://84202064