This patch introduces new diagnostics to the ClangImporter to help
explain why certain C, Objective-C or C++ declarations fail to import
into Swift. This patch includes new diagnostics for the following entities:
- C functions
- C struct fields
- Macros
- Objective-C properties
- Objective-C methods
In particular, notes are attached to indicate when any of the above
entities fail to import as a result of refering an incomplete (only
forward declared) type.
The new diangostics are hidden behind two new flags, -enable-experimental-clang-importer-diagnostics
and -enable-experimental-eager-clang-module-diagnostics. The first flag emits diagnostics lazily,
while the second eagerly imports all declarations visible from loaded Clang modules. The first
flag is intended for day to day swiftc use, the second for module linting or debugging the importer.
Note: we only lazily load the result if it's a record, because otherwise it's trivial to load when importing the function. Also, we still eagerly import operator's results types.
This change makes ClangImporter import some C++ member functions as non-mutating, given that they satisfy two requirements:
* the function itself is marked as `const`
* the parent struct doesn't contain any `mutable` members
`get` accessors of subscript operators are now also imported as non-mutating if the C++ `operator[]` satisfies the requirements above.
Fixes SR-12795.
This PR makes it possible to instantiate C++ class templates from Swift. Given a C++ header:
```c++
// C++ module `ClassTemplates`
template<class T>
struct MagicWrapper {
T t;
};
struct MagicNumber {};
```
it is now possible to write in Swift:
```swift
import ClassTemplates
func x() -> MagicWrapper<MagicNumber> {
return MagicWrapper<MagicNumber>()
}
```
This is achieved by importing C++ class templates as generic structs, and then when Swift type checker calls `applyGenericArguments` we detect when the generic struct is backed by the C++ class template and call Clang to instantiate the template. In order to make it possible to put class instantiations such as `MagicWrapper<MagicNumber>` into Swift signatures, we have created a new field in `StructDecl` named `TemplateInstantiationType` where the typechecker stores the `BoundGenericType` which we serialize. Deserializer then notices that the `BoundGenericType` is actually a C++ class template and performs the instantiation logic.
Depends on https://github.com/apple/swift/pull/33420.
Progress towards https://bugs.swift.org/browse/SR-13261.
Fixes https://bugs.swift.org/browse/SR-13775.
Co-authored-by: Dmitri Gribenko <gribozavr@gmail.com>
Co-authored-by: Rosica Dejanovska <rosica@google.com>
LLVM, as of 77e0e9e17daf0865620abcd41f692ab0642367c4, now builds with
-Wsuggest-override. Let's clean up the swift sources rather than disable
the warning locally.
As part of this, we have to change the type export rules to
prevent `@convention(c)` function types from being used in
exported interfaces if they aren't serializable. This is a
more conservative version of the original rule I had, which
was to import such function-pointer types as opaque pointers.
That rule would've completely prevented importing function-pointer
types defined in bridging headers and so simply doesn't work,
so we're left trying to catch the unsupportable cases
retroactively. This has the unfortunate consequence that we
can't necessarily serialize the internal state of the compiler,
but that was already true due to normal type uses of aggregate
types from bridging headers; if we can teach the compiler to
reliably serialize such types, we should be able to use the
same mechanisms for function types.
This PR doesn't flip the switch to use Clang function types
by default, so many of the clang-function-type-serialization
FIXMEs are still in place.
This reverts commit e805fe486e, which reverted
the change earlier. The problem was caused due to a simultaneous change to some
code by the PR with parsing and printing for Clang function types (#28737)
and the PR which introduced Located<T> (#28643).
This commit also includes a small change to make sure the intersecting region
is fixed: the change is limited to using the fields of Located<T> in the
`tryParseClangType` lambda.
Note: The change in ASTBuilder::createFunctionType is functionally minor,
but we need the FunctionType::Params computed _before_ the ExtInfo, so we
need to shuffle a bunch of code around.
This refactors DWARFImporter to become a part of ClangImporter, since
it needs access to many of its implementation details anyway. The
DWARFImporterDelegate is just another mechanism for deserializing
Clang ASTs and once we have a Clang AST, the processing is effectively
the same.
Traditionally a serialized binary Swift module (as used in debug info)
can only be imported if all of its Clang dependencies can be imported
*from source*.
- Swift's ClangImporter imports Clang modules by converting Clang AST
types into Swift AST types.
- LLDB knows how to find Clang types in DWARF or other debug info and
can synthesize a Clang AST from that information.
This patch introduces a DWARFImporter delegate that is implemented by
LLDB to connect these two components. With this, a Clang type can be
found (by name) in the debug info and handed over to ClangImporter to
create a Swift type from it. This path has lower fidelity than
importing the Clang modules from source, since it is missing out on
Swiftication annotations and other metadata that is not serialized in
DWARF, but it's invaluable as a fallback mechanism for the debugger
when source code for the Clang modules isn't available or the modules
are otherwise not buildable.
rdar://problem/49233932
https://github.com/apple/swift/pull/16951 introduced a layering violation between the
AST and ClangImporter libraries; break the layering violation by moving the function
isInOverlayModuleForImportedModule() to ClangModuleLoader.
This has the effect of propagating the search path to the clang importer as '-iframework'.
It doesn't affect whether a swift module is treated as system or not, this can be done as follow-up enhancement.
Modules occupy a weird space in the AST now: they can be treated like
types (Swift.Int), which is captured by ModuleType. They can be
treated like values for disambiguation (Swift.print), which is
captured by ModuleExpr. And we jump through hoops in various places to
store "either a module or a decl".
Start cleaning this up by transforming Module into ModuleDecl, a
TypeDecl that's implicitly created to describe a module. Subsequent
changes will start folding away the special cases (ModuleExpr ->
DeclRefExpr, name lookup results stop having a separate Module case,
etc.).
Note that the Module -> ModuleDecl typedef is there to limit the
changes needed. Much of this patch is actually dealing with the fact
that Module used to have Ctx and Name public members that now need to
be accessed via getASTContext() and getName(), respectively.
Swift SVN r28284
Now that we can pick up search paths from frameworks (necessary to debug
them properly), we can end up with exponential explosions leading to the
same search path coming up thousands of times, which destroys compilation
time /and/ debugger responsiveness. This is already hitting people with
frameworks compiled for app extensions (due to a mistaken approximation
of whether or not something is a framework), but we're turning this on for
all frameworks in the immediate future.
rdar://problem/20291720
Swift SVN r27087
This performs very conservative dependency generation for each compile task
within a full compilation. Any source file, swiftmodule, or Objective-C
header file that is /touched/ gets added to the dependencies list, which
is written out on a per-input basis at the end of compilation.
This does /not/ handle dependencies for the aggregated swiftmodule, swiftdoc,
generated header, or linked binary. This is just the minimum needed to get
Xcode to recognize what needs to be rebuilt when a header or Swift source
file changes. We can revisit this later.
This finishes <rdar://problem/14899639> for now.
Swift SVN r18045