* [Distributed] Implement func metadata and executeDistributedTarget
dont expose new entrypoints
able to get all the way to calling _execute
* [Distributed] reimplement distributed get type info impls
* [Distributed] comment out distributed_actor_remoteCall for now
* [Distributed] disable test on linux for now
The internal compiler headers should not include swift shim headers. Removing this dependency allows libSwift to import Swift compiler headers (otherwise, we get name conflics, because we import SwiftShims headers twice: from the source includes and build includes).
Because DEMANGLER_ASSERT() might cause the remanglers to return a ManglingError
with the code ManglingError::AssertionFailed, it's useful to have a line number
in the ManglingError as well as the other information. This is also potentially
helpful for other cases where the code is used multiple times in the remanglers.
rdar://79725187
First pass at adding error handling to the actual Remangler. There are
still some assert() calls at this point that I'm thinking about.
rdar://79725187
Mangling can fail, usually because the Node structure has been built
incorrectly or because something isn't supported with the old remangler.
We shouldn't just terminate the program when that happens, particularly
if it happens because someone has passed bad data to the demangler.
rdar://79725187
Compiler:
- Add `Forward` and `Reverse` to `DifferentiabilityKind`.
- Expand `DifferentiabilityMask` in `ExtInfo` to 3 bits so that it now holds all 4 cases of `DifferentiabilityKind`.
- Parse `@differentiable(reverse)` and `@differentiable(_forward)` declaration attributes and type attributes.
- Emit a warning for `@differentiable` without `reverse`.
- Emit an error for `@differentiable(_forward)`.
- Rename `@differentiable(linear)` to `@differentiable(_linear)`.
- Make `@differentiable(reverse)` type lowering go through today's `@differentiable` code path. We will specialize it to reverse-mode in a follow-up patch.
ABI:
- Add `Forward` and `Reverse` to `FunctionMetadataDifferentiabilityKind`.
- Extend `TargetFunctionTypeFlags` by 1 bit to store the highest bit of differentiability kind (linear). Note that there is a 2-bit gap in `DifferentiabilityMask` which is reserved for `AsyncMask` and `ConcurrentMask`; `AsyncMask` is ABI-stable so we cannot change that.
_Differentiation module:
- Replace all occurrences of `@differentiable` with `@differentiable(reverse)`.
- Delete `_transpose(of:)`.
Resolves rdar://69980056.
- `Mangle::ASTMangler::mangleAutoDiffDerivativeFunction()` and `Mangle::ASTMangler::mangleAutoDiffLinearMap()` accept original function declarations and return a mangled name for a derivative function or linear map. This is called during SILGen and TBDGen.
- `Mangle::DifferentiationMangler` handles differentiation function mangling in the differentiation transform. This part is necessary because we need to perform demangling on the original function and remangle it as part of a differentiation function mangling tree in order to get the correct substitutions in the mangled derivative generic signature.
A mangled differentiation function name includes:
- The original function.
- The differentiation function kind.
- The parameter indices for differentiation.
- The result indices for differentiation.
- The derivative generic signature.
Since libDemangling is included in the Swift standard library,
ODR violations can occur on platforms that allow statically
linking stdlib if Swift code is linked with other compiler
libraries that also transitively pull in libDemangling, and if
the stdlib version and compiler version do not match exactly
(even down to commit drift between releases). This lets the
runtime conditionally segregate its copies of the libDemangling
symbols from those in the compiler using an inline namespace
without affecting usage throughout source.
This part of a series of patches to bring ASTPrinter and Swift Demangler to
feature parity, which is needed by LLDB, which depends on using the strings
produced by either interchangibly.
rdar://problem/64222171
This is analogous to ASTPrinter's FullyQualifiedTypesIfAmbiguous option.
This part of a series of patches to bring ASTPrinter and Swift Demangler to
feature parity, which is needed by LLDB, which depends on using the strings
produced by either interchangibly.
rdar://problem/63700540
This part of a series of patches to bring ASTPrinter and Swift Demangler to
feature parity, which is needed by LLDB, which depends on using the strings
produced by either interchangibly.
rdar://problem/63700540
This part of a series of patches to bring ASTPrinter and Swift Demangler to
feature parity, which is needed by LLDB, which depends on using the strings
produced by either interchangibly.
<rdar://problem/63700540>
The demangler tolerates arbitrary suffixes on mangled names, and parses them as a Suffix node. When looking up a class by an ObjC mangled name, we don't want such demanglings to succeed, because this will result in false positives. It's expected that NSClassFromString(someClassName + "some suffix") will fail, unless something has actually created a class with that suffix.
rdar://problem/60012296
Extract common code from the old and new remangler into a common base class.
This lets the old remangler benefit from the changes I did recently in the new remangler.
LLDB would like to substitute the original Archetype names from the
source code when demangling symbols instead of the confusing generic
'A', 'B', ...
<rdar://problem/48259889>
The demangler can be initialized with a preallocated memory on the stack. Only in case of an overflow, the bump pointer allocator mallocs new memory.
Also, support that a new instance of a demangler can "borrow" the free memory from an existing demangler. This is useful because in the runtime the demangler is invoked recursively. With this feature, all the nested demanglers can share a single stack allocated space.
This is done by disallowing nodes with children to also have index or text payloads.
In some cases those payloads were not needed anyway, because the information can be derived later.
In other cases the fix was to insert an additional child node with the index/text payload.
Also, implement single or double children as "inline" children, which avoids needing a separate node vector for children.
All this reduces the needed size for node trees by over 2x.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Extending the mangling of symbolic references to also include indirect
symbolic references. This allows mangled names to refer to context
descriptors (both type and protocol) not in the current source file.
For now, only permit indirect symbolic references within the current module,
because remote mirrors (among other things) is unable to handle relocations.
Co-authored-by: Joe Groff <jgroff@apple.com>
This function can be queried to find out whether the passed
mangled name is an Objective-C symbol. This will be used
in the debugger to replace an hardcoded check that would
break if the mangling prefix changed.
<rdar://problem/44467875>
Previously we could only handle symbolic references at the
top level, but this is insufficient; for example, you can
have a nested type X.Y where X is defined in the current
translation unit and Y is defined in an extension of X in
a different translation unit. In this case, X.Y mangles as
a tree where the child contains a symbolic reference to X.
Handle this by adding a new form of Demangle::mangleNode()
which takes a callback for resolving symbolic references.
Fixes <rdar://problem/39613190>.
And use them in the reflection library (TypeRef). These were
private to `TypeRef.cpp` but can be moved to the demangler as
they can be of general use, and we can use them from lldb (which
has homemade versions of the functions as well). Bonus point,
it probably makes sense for these helpers to live in the demangler
anyway.
<rdar://problem/37710513>
This makes resolving mangled names to nominal types in the same module more efficient, and for eventual secrecy improvements, also allows types in the same module to be referenced from mangled typerefs without encoding any source-level name information about them.
This particular API can be safely used with a null-terminated string,
and is used by some clients (e.g., LLDB), so add back a "const char *"
variant that safely accesses a null-terminated string.
The mangled name of protocol descriptors was the “protocol composition”
type consisting of a single protocol, which is a little odd. Instead,
use a bare protocol reference (e.g., “6Module5ProtoP”) with the “$S”
prefer to be more in line with nominal type descriptor names while still
making it clear that this is a Swift (not an Objective-C) protocol.
isMangledName() was passing the data() pointer to a routine that assumed
it was getting a null-terminated string. Define away this class of error
by using StringRef consistently.
Make function mangling backward compatible based on the prefix
of the mangled symbol, which is used to distinguish between names
with old/new parameter label mangling schemes.
Resolves: rdar://problem/36357120