LLVM, as of 77e0e9e17daf0865620abcd41f692ab0642367c4, now builds with
-Wsuggest-override. Let's clean up the swift sources rather than disable
the warning locally.
The driver can now schedule jobs which typecheck just-emitted module interfaces to ensure that they can be consumed later. This can be enabled manually by passing `-verify-emitted-module-interface` to the driver.
This commit adds LTO support for handling linker options and LLVM BC
emission. Even for ELF, swift-autolink-extract is unnecessary because
linker options are embeded in LLVM BC content when LTO.
This commit adds -lto flag for driver to enable LTO at LLVM level.
When -lto=llvm given, compiler emits LLVM bitcode file instead of object
file and perform thin LTO using libLTO.dylib plugin.
When -lto=llvm-full given, perform full LTO instead of thin LTO.
Restructure fine-grained-dependencies to enable unit testing
Get frontend to emit correct swiftdeps file (fine-grained when needed) and only emit dot file for -emit-fine-grained-dependency-sourcefile-dot-files
Use deterministic order for more information outputs.
Set EnableFineGrainedDependencies consistently in frontend.
Tolerate errors that result in null getExtendedNominal()
Fix memory issue by removing node everywhere.
Break up print routine
Be more verbose so it will compile on Linux.
Sort batchable jobs, too.
Restructure fine-grained-dependencies to enable unit testing
Get frontend to emit correct swiftdeps file (fine-grained when needed) and only emit dot file for -emit-fine-grained-dependency-sourcefile-dot-files
Use deterministic order for more information outputs.
Set EnableFineGrainedDependencies consistently in frontend.
Tolerate errors that result in null getExtendedNominal()
Fix memory issue by removing node everywhere.
Break up print routine
Be more verbose so it will compile on Linux.
Sort batchable jobs, too.
Add a new action, LoadModuleJobAction, that the driver can use to schedule a
load of a given module before we fan out and invoke the frontend multiple
times. This gives the module interface loader a chance to compile it from a
module interface before we start with parallel invocations, avoiding starting
potentially dozens of redundant compiles of a large module. Start by using this
on the standard library.
Quick fix for rdar://52839445
Previously, Actions were responsible for freeing their inputs...
except for the ones that weren't. Or the ones that were supposed
to, but then they needed to share an input, so they couldn't anymore.
If this sounds ridiculous, you're right; now Actions are just
immediately allocated and owned by the Compilation.
The graph structure of the actions is still useful for some things; in
particular, "top-level" actions get to put their outputs somewhere
permanent rather than TMPDIR. But I expect these things to get cleaned
up in the future too.
For the multiple-files mode -emit-pch is still invoked in separate frontend invocation but with using a persistent PCH.
Subsequent frontend invocations use the persistent PCH but they don't need to validate it.
For all-files mode (e.g. WMO) the frontend invocation uses a persistent PCH that it also validates.
Add a -verify-debug-info option that invokes dwarfdump --verify as the last step after running dsymutil. dwarfdump is invoked with same options clang 802.0.35 uses to invoke it:
dwarfdump --verify --debug-info --eh-frame --quiet
A warning is produced if -verify-debug-info is set and no debug option is also set.
dwarfdump is failing to validate the debug info in the test verify-debug-info.swift. The failure is:
error: .debug_line[0x0000007d].row[0].file = 1 is not a valid index
https://bugs.swift.org/browse/SR-2396
Define compilation record (.swiftdeps) top-level keys, as well as string
identifiers used in compilation record files (like "!dirty" and "!private"), in
a single location. NFC.
Also, cluster the flags on Action into a single word. This probably doesn't
make any real difference, but it's the convention.
No functionality change.
This makes it easier to make interpreter modes behave differently from
compilation modes. Obviously that's a trade-off, since the two modes also
share plenty, but given how few of the existing CompileJobAction checks had
to be modified for the new InterpretJobAction, I think this is the right
way to go.
Groundwork for setting [DY]LD_LIBRARY_PATH ahead of time when invoking the
interpreter, which is rdar://problem/23588774.
For now, just error out at the end of the build if something was modified,
forcing a rebuild. The incremental logic should get that rebuild right.
We could automatically restart the rebuild, but that could lead to infinite
compilation if the user continues to edit an important file.
inside a swift ast section in an object file so it can be passed to the
linker. The driver automatically wraps merged swiftmodules iff the target
is ELF.
rdar://problem/22407666
Swift SVN r31641
...not if it's newer than its output .o file. This handles cases where the
object file is generated too quickly (rdar://problem/19404140) or when you
revert to a previous version of the file, mtime intact (rdar://problem/19720146).
There's a lot of test churn here; the only real new test is the backwards
mtime update in one-way.swift.
Swift SVN r29584