It is causing bots to fail.
* Revert "The __has_include(<os/system_version.h>) branch here wasn't quite right, we'll just use the dlsym one for now"
This reverts commit f824922456.
* Revert "Remove stdlib and runtime dependencies on Foundation and CF"
This reverts commit 3fe46e3f16.
rdar://54709269
- Use _HashTable to unify low-level hashing operations across Set and Dictionary.
- Store the capacity directly inside the storage header. This allows the maximum load factor to be controlled by non-inlinable code.
- Introduce a dedicated class for the empty singleton.
- Add _BridgingHashBuffer, a standalone flat hash buffer for use in deferred bridging. Use it to eliminate the need to support non-hashable storage/wrapper variants and to improve memory use in cases where Key or Value are verbatim bridged.
- Eliminate the “TypedNative*Storage” class and _NativeSet/_NativeDictionary’s support for non-hashable keys.
- Rename storage classes as follows:
_RawNativeSetStorage ⟹ _RawSetStorage
_RawNativeDictionaryStorage ⟹ _RawDictionaryStorage
_TypedNativeSetStorage ⟹ (removed)
_TypedNativeDictionaryStorage ⟹ (removed)
_HashableTypedNativeSetStorage ⟹ _SetStorage
_HashableTypedNativeDictionaryStorage ⟹ _DictionaryStorage
The new names make it obvious which ivar layout is in use.
Add the `-warn-implicit-overrides` flag when building the standard library
and overlays, so that each protocol member that overrides a member of an
inherited protocol will produce a warning unless annotated with either
‘override’ or ‘@_nonoverride’.
An annotation of `override` will mean that the overriding requirement will be treated identically to the overridden declaration. If for some reason a concrete type’s conformance to the inheriting protocol provides a different witness for the overriding requirement than the conformance to the inherited protocol’s witness for the overridden requirement, the witness for the inheriting (more-specialized) protocol will be ignored. A protocol requirement marked ‘override’ only makes sense when the declaration is needed to help associated type inference, which is why the ‘override’ annotations correlate so closely with ABI FIXMEs.
An annotation of `@_nonoverride` means that the two protocol requirements will be treated independently, and may be bound to different witnesses. Use `@_nonoverride` when we might need different witnesses, e.g., because the semantics of the potentially-overriding declaration differ from that of the potentially-overridden declaration. `BidirectionalCollection.index(_:offsetBy:)` is the most obvious example, because the `BidirectionalCollection` ’s version of `index(_:offsetBy:)` allows negative indices. `RandomAccessCollection` ’s version is also marked `@_nonoverride` because it is required to be asymptotically faster than the `Collection` or `BidirectionalCollection` versions.
Dictionary’s native storage classes and _SwiftDeferredNSDictionary override -[NSDictionary getObjects:andKeys:] instead of its safer replacement, -[NSDictionary getObjects:andKeys:count:].
Overriding the correct method will considerably speed up some Cocoa operations on bridged dictionaries.
rdar://problem/39285882
* Migrate from `UnsafePointer<Void>` to `UnsafeRawPointer`.
As proposed in SE-0107: UnsafeRawPointer.
`void*` imports as `UnsafeMutableRawPointer`.
`const void*` imports as `UnsafeRawPointer`.
Occurrences of `UnsafePointer<Void>` are replaced with UnsafeRawPointer.
* Migrate overlays from UnsafePointer<Void> to UnsafeRawPointer.
This requires explicit memory binding in several places,
particularly in NSData and CoreAudio.
* Fix a bunch of test cases for Void->Raw migration.
* qsort takes IUO values
* Bridge `Unsafe[Mutable]RawPointer as `void [const] *`.
* Parse #dsohandle as UnsafeMutableRawPointer
* Update a bunch of test cases for Void->Raw migration.
* Trivial fix for the SceneKit test case.
* Add an UnsafeRawPointer self initializer.
This is unfortunately necessary for assignment between types imported from C.
* Tiny simplification of the initializer.
* Migrate from `UnsafePointer<Void>` to `UnsafeRawPointer`.
As proposed in SE-0107: UnsafeRawPointer.
`void*` imports as `UnsafeMutableRawPointer`.
`const void*` imports as `UnsafeRawPointer`.
Occurrences of `UnsafePointer<Void>` are replaced with UnsafeRawPointer.
* Migrate overlays from UnsafePointer<Void> to UnsafeRawPointer.
This requires explicit memory binding in several places,
particularly in NSData and CoreAudio.
* Fix a bunch of test cases for Void->Raw migration.
* qsort takes IUO values
* Bridge `Unsafe[Mutable]RawPointer as `void [const] *`.
* Parse #dsohandle as UnsafeMutableRawPointer
* Update a bunch of test cases for Void->Raw migration.
* Trivial fix for the SceneKit test case.
* Add an UnsafeRawPointer self initializer.
This is unfortunately necessary for assignment between types imported from C.
* Tiny simplification of the initializer.
Implements SE-0055: https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md
- Add NULL as an extra inhabitant of Builtin.RawPointer (currently
hardcoded to 0 rather than being target-dependent).
- Import non-object pointers as Optional/IUO when nullable/null_unspecified
(like everything else).
- Change the type checker's *-to-pointer conversions to handle a layer of
optional.
- Use 'AutoreleasingUnsafeMutablePointer<NSError?>?' as the type of error
parameters exported to Objective-C.
- Drop NilLiteralConvertible conformance for all pointer types.
- Update the standard library and then all the tests.
I've decided to leave this commit only updating existing tests; any new
tests will come in the following commits. (That may mean some additional
implementation work to follow.)
The other major piece that's missing here is migration. I'm hoping we get
a lot of that with Swift 1.1's work for optional object references, but
I still need to investigate.
The C++ code was very fragile in terms of ABI dependencies and broke
when the standard library was built with -enable-resilience.
The actual reason it broke is that case numbering changes when
resilience is enabled, but instead of messing with that, it seemed
more logical to rewrite this routine in Swift instead, to avoid
ABI dependencies altogether.
This requires using the "shadow protocol" trick to call NSNumber
methods, since we cannot import NSNumber from the stdlib.
Most of this is in updating the standard library, SDK overlays, and
piles of test cases to use the new names. No surprises here, although
this shows us some potential heuristic tweaks.
There is one substantive compiler change that needs to be factored out
involving synthesizing calls to copyWithZone()/copy(zone:). Aside from
that, there are four failing tests:
Swift :: ClangModules/objc_parse.swift
Swift :: Interpreter/SDK/Foundation_test.swift
Swift :: Interpreter/SDK/archiving_generic_swift_class.swift
Swift :: Interpreter/SDK/objc_currying.swift
due to two independent remaining compiler bugs:
* We're not getting partial ordering between NSCoder's
encode(AnyObject, forKey: String) and NSKeyedArchiver's version of
that method, and
* Dynamic lookup (into AnyObject) doesn't know how to find the new
names. We need the Swift name lookup tables enabled to address this.
The standard library has grown significantly, and we need a new
directory structure that clearly reflects the role of the APIs, and
allows future growth.
See stdlib/{public,internal,private}/README.txt for more information.
Swift SVN r25876