id-as-Any lets you pass Optional to an ObjC API that takes `nonnull id`, and also lets you bridge containers of `Optional` to `NSArray` etc. When this occurs, we can unwrap the value and bridge it so that inhabited optionals still pass into ObjC in the expected way, but we need something to represent `none` other than the `nil` pointer. Cocoa provides `NSNull` as the canonical "null for containers" object, which is the least bad of many possible answers. If we happen to have the rare nested optional `T??`, there is no precedented analog for these in Cocoa, so just generate a unique sentinel object to preserve the `nil`-ness depth so we at least don't lose information round-tripping across the ObjC-Swift bridge.
Making Optional conform to _ObjectiveCBridgeable is more or less enough to make this all work, though there are a few additional edge case things that need to be fixed up. We don't want to accept `AnyObject??` as an @objc-compatible type, so special-case Optional in `getForeignRepresentable`.
Implements SR-0140 (rdar://problem/27905315).
id-as-Any lets you pass Optional to an ObjC API that takes `nonnull id`, and also lets you bridge containers of `Optional` to `NSArray` etc. When this occurs, we can unwrap the value and bridge it so that inhabited optionals still pass into ObjC in the expected way, but we need something to represent `none` other than the `nil` pointer. Cocoa provides `NSNull` as the canonical "null for containers" object, which is the least bad of many possible answers. If we happen to have the rare nested optional `T??`, there is no precedented analog for these in Cocoa, so just generate a unique sentinel object to preserve the `nil`-ness depth so we at least don't lose information round-tripping across the ObjC-Swift bridge.
Making Optional conform to _ObjectiveCBridgeable is more or less enough to make this all work, though there are a few additional edge case things that need to be fixed up. We don't want to accept `AnyObject??` as an @objc-compatible type, so special-case Optional in `getForeignRepresentable`.
Implements SR-0140 (rdar://problem/27905315).
This makes it a bit easier to diagnose unexpected boxing problems in the debugger, by allowing `po [value _swiftTypeName]` to work, instead of forcing users to know how to call `swift_getTypeName` from lldb themselves.
If the Swift error wrapped in a _SwiftNativeNSError box conforms to
Hashable, the box now uses the Swift's conformance to Hashable.
Part of rdar://problem/27574348.
SILGen already attempts to extract an embedded NSError when
type-erasing to an Error existential; make the runtime do the same
thing dynamically.
Huge thanks to Joe Groff who noticed that I missed this path.
Imported Cocoa error types are represented by structs wrapping an
NSError. The conversion from these structs to Error would end up
boxing the structs in _SwiftNativeNSError, losing identity and leading
to a wrapping loop.
Instead, extract the embedded NSError if there is one. In the Swift
runtime, do this as part of the dynamic cast to NSError, using a (new,
defaulted) requirement in the Error type so we can avoid an extra
runtime lookup of the protocol. In SILGEn, do this by looking for the
_BridgedStoredNSError protocol conformance when erasing to an Error
type. Fixes SR-1562 / rdar://problem/26370984.
All generic bridgeable types can bridge for all their instantiations now. Removing this ferrets out some now-unnecessary traps that check for unbridgeable parameter types.
- Any is made into a keyword which is always resolved into a TypeExpr,
allowing the removal of the type system code to find TheAnyType before
an unconstrained lookup.
- Types called `Any` can be declared, they are looked up as any other
identifier is
- Renaming/redefining behaviour of source loc methods on
ProtocolCompositionTypeRepr. Added a createEmptyComposition static
method too.
- Code highlighting treats Any as a type
- simplifyTypeExpr also does not rely on source to get operator name.
- Any is now handled properly in canParseType() which was causing
generic param lists containing ‘Any’ to fail
- The import objc id as Any work has been relying on getting a decl for
the Any type. I fix up the clang importer to use Context.TheAnyType
(instead of getAnyDecl()->getDeclaredType()). When importing the id
typedef, we create a typealias to Any and declare it unavaliable.
- All parts of the compiler now use ‘P1 & P2’ syntax
- The demangler and AST printer wrap the composition in parens if it is
in a metatype lookup
- IRGen mangles compositions differently
- “protocol<>” is now “swift.Any”
- “protocol<_TP1P,_TP1Q>” is now “_TP1P&_TP1Q”
- Tests cases are updated and added to test the new syntax and mangling
If there's no better mapping for a Swift value into an Objective-C object for bridging purposes, we can fall back to boxing the value in a class. This class doesn't have any public interface beyond being `NSObject`-conforming in Objective-C, but is recognized by the Swift runtime so that it can be dynamically cast back to the boxed type.
The general rule here is that something needs to be SWIFT_CC(swift)
if it's just declared in Swift code using _silgen_name, as opposed to
importing something via a header.
Of course, SWIFT_CC(swift) expands to nothing by default for now, and
I haven't made an effort yet to add the indirect-result / context
parameter ABI attributes. This is just a best-effort first pass.
I also took the opportunity to shift a few files to just implement
their shims header and to demote a few things to be private stdlib
interfaces.
Fixes a leak when a bridgeable value type is dynamically cast to a class type, and the cast fails, for instance:
```
let x: Any = "string"
x is NSNumber
```
We would fail to release the bridging object after attempting the cast.
- added read / write lock support
- added non-fatal error support to allow use of mutex in fatal error reporting pathway
- isolated pthread implementation to it own header/cpp file pair
- expanded unit tests to cover new code as well as better test existing mutex
- removed a layer of complexity that added no real value
We have a special rule that Optional<T>.none successfully dynamically casts
to Optional<U>.none for any T and U. However the implementation was incorrect
if the source and destination types had a different size. We would initialize
the source to nil, and then copy to the result.
The correct implementation is to initialize the result using the result
payload type directly, and not call _succeed() at all.
Fixes <https://bugs.swift.org/browse/SR-1056>.
We have a special rule that Optional<T>.none successfully dynamically casts
to Optional<U>.none for any T and U. However the implementation was incorrect
if the source and destination types had a different size. We would initialize
the source to nil, and then copy to the result.
The correct implementation is to initialize the result using the result
payload type directly, and not call _succeed() at all.
Fixes <https://bugs.swift.org/browse/SR-1056>.