Isolated parameters are part of function types. Encode them in function
type manglings and metadata, and ensure that they round-trip through
the various mangling and metadata facilities. This nails down the ABI
for isolated parameters.
Implement name mangling, type metadata, runtime demangling, etc. for
global-actor qualified function types. Ensure that the manglings
round-trip through the various subsystems.
Implements rdar://78269642.
Repurpose mangling operator `Y` as an umbrella operator that covers new attributes on function types. Free up operators `J`, `j`, and `k`.
```
async ::= 'Ya' // 'async' annotation on function types
sendable ::= 'Yb' // @Sendable on function types
throws ::= 'K' // 'throws' annotation on function types
differentiable ::= 'Yjf' // @differentiable(_forward) on function type
differentiable ::= 'Yjr' // @differentiable(reverse) on function type
differentiable ::= 'Yjd' // @differentiable on function type
differentiable ::= 'Yjl' // @differentiable(_linear) on function type
```
Resolves rdar://76299796.
`@noDerivative` was not mangled in function types, and was resolved incorrectly when there's an ownership specifier. It is fixed by this patch with the following changes:
* Add `NoDerivative` demangle node represented by a `k` operator.
```
list-type ::= type identifier? 'k'? 'z'? 'h'? 'n'? 'd'? // type with optional label, '@noDerivative', inout convention, shared convention, owned convention, and variadic specifier
```
* Fix `NoDerivative`'s overflown offset in `ParameterTypeFlags` (`7` -> `6`).
* In type decoder and type resolver where attributed type nodes are processed, add support for nested attributed nodes, e.g. `inout @noDerivative T`.
* Add `TypeResolverContext::InoutFunctionInput` so that when we resolve an `inout @noDerivative T` parameter, the `@noDerivative T` checking logic won't get a `TypeResolverContext::None` set by the caller.
Resolves rdar://75916833.
* Move differentiability kinds from target function type metadata to trailing objects so that we don't exhaust all remaining bits of function type metadata.
* Differentiability kind is now stored in a tail-allocated word when function type flags say it's differentiable, located immediately after the normal function type metadata's contents (with proper alignment in between).
* Add new runtime function `swift_getFunctionTypeMetadataDifferentiable` which handles differentiable function types.
* Fix mangling of different differentiability kinds in function types. Mangle it like `ConcurrentFunctionType` so that we can drop special cases for escaping functions.
```
function-signature ::= params-type params-type async? sendable? throws? differentiable? // results and parameters
...
differentiable ::= 'jf' // @differentiable(_forward) on function type
differentiable ::= 'jr' // @differentiable(reverse) on function type
differentiable ::= 'jd' // @differentiable on function type
differentiable ::= 'jl' // @differentiable(_linear) on function type
```
Resolves rdar://75240064.
Introduce `@concurrent` attribute on function types, including:
* Parsing as a type attribute
* (De-/re-/)mangling for concurrent function types
* Implicit conversion from @concurrent to non-@concurrent
- (De-)serialization for concurrent function types
- AST printing and dumping support
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
This cleans up some more `llvm::` leakage in the runtime when built into
a static library. With this change we are down to 3 leaking symbols in
the static library related to a missed ADT (`StringSwitch`).
To allow more pervasive use of TypeRefs in LLDB, we need a way to build mangled
names from TypeRef pointers to allow round-tripping between TypeRefs and AST
types. The goal is to experiment with making lldb::CompilerType backed by
TypeRefs instead of AST types.
<rdar://problem/55412775>
This makes for a cleaner and less implicit-context-heavy API, and makes it easier for symbolic
reference resolvers to do context-dependent things (like map the in-memory base address back to a
remote address in MetadataReader).
This dramatically reduces the number of needed malloc calls.
Unfortunately I had to add the implementation of SmallVectorBase::grow_pod to the runtime, as we don't link LLVM. This is a bad hack, but better than re-inventing a new SmallVector implementation.
SR-10028
rdar://problem/48575729
This is done by disallowing nodes with children to also have index or text payloads.
In some cases those payloads were not needed anyway, because the information can be derived later.
In other cases the fix was to insert an additional child node with the index/text payload.
Also, implement single or double children as "inline" children, which avoids needing a separate node vector for children.
All this reduces the needed size for node trees by over 2x.
Anonymous context descriptors were being treated as non-generic by
IRGen, which lead to problems for (file)private types within generic
types. Emit generic parameters and requirements for anonymous contexts
as well.
The runtime was mostly prepared for this, and the ABI already
accounted for it, so the runtime change is minor---it only affected
building a demangle tree from metadata.
Fixes rdar://problem/46853806.
While declaration mangling now does the right thing for parameter lists,
the function type mangling unfortunately still models the parameter list
as a single tuple node.
Change the runtime's behavior to match the AST mangler, which wraps
a single tuple-typed parameter in a tuple node, so that we can produce
different mangling trees for function types taking multiple arguments
versus a single tuple argument.
When mapping from type metadata to a demangle tree, fill in the complete
set of generic arguments. Most of the effort here is in dealing with
extensions that involve same-type constraints on a generic parameter, e.g.,
extension Array where String == Element { }
extension Dictionary where Key == Value { }
In such cases, the metadata won’t contain generic arguments for every
generic parameter. Rather, the generic arguments for non-key generic
parameters will need to be computed based on the same-type requirements
of the context. Do so, and eliminate the old hacks that put the generic
arguments on the innermost type. We don’t need them any more.
Part of rdar://problem/37170296.
The token contents doesn't really matter, but it can't start with a digit if it's going to show up in mangled names using identifier grammar. `s/0x/$/` for some 80s flair.
- Instead of keeping multiple flags in the type descriptor flags,
just keep a single flag indicating the presence of additional
import information after the name.
- That import information consists of a sequence of null-terminated
C strings, terminated by an empty string (i.e. by a double null
terminator), each prefixed with a character describing its purpose.
- In addition to the symbol namespace and related entity name,
include the ABI name if it differs from the user-facing name of the
type, and make the name the user-facing Swift name.
There's a remaining issue here that isn't great: we don't correctly
represent the parent relationship between error types and their codes,
and instead we just use the Clang module as the parent. But I'll
leave that for a later commit.
Rather than storing a mangled name in a Swift protocol descriptor,
which encodes information that is redundant with the context of the
protocol, store an unmangled name as in nominal type descriptors. Update
the various places where this name is used to extract the demangle
tree from the context descriptors.
Use ProtocolDescriptorRefs within the runtime representation of
existential type metadata (TargetExistentialTypeMetadata) instead of
bare protocol descriptor pointers. Start rolling out the use of
ProtocolDescriptorRef in a few places in the runtime that touch this
code. Note that we’re not yet establishing any strong invariants on
the TargetProtocolDescriptorRef instances.
While here, replace TargetExistentialTypeMetadata’s hand-rolled pointer
arithmetic with swift::ABI::TrailingObjects and centralize knowledge of
its layout better.
Clang-importer-synthesized declarations get an extra tag character included in their mangling, which was not being preserved in type context descriptors. This caused runtime lookup for these synthesized types to fail. Fix this by adding the tag information to type context descriptors and teaching the runtime to match it up when fetching metadata by mangled name. Fixes rdar://problem/40878715.
We want to be able to potentially introduce new metadata kinds in future Swift compilers, so a runtime ought to be able to degrade gracefully in the face of metadata kinds it doesn't know about. Remove attempts to exhaustively switch over metadata kinds and instead treat unknown metadata kinds as opaque.
Now that every foreign type has a type context descriptor, we can use that for a uniquing key instead of a dedicated mangled string, saving some code size especially in code that makes heavy use of imported types. rdar://problem/37537241
Minimize the generic class metadata template by removing the
class header and base-class members. Add back the set of
information that's really required for instantiation.
Teach swift_allocateGenericClass how to allocate classes without
superclass metadata. Reorder generic initialization to establish
a stronger phase-ordering between allocation (the part that doesn't
really care about the generic arguments) and initialization (the
part that really does care about the generic arguments and therefore
might need to be delayed to handle metadata cycles).
A similar thing needs to happen for resilient class relocation.
This makes resolving mangled names to nominal types in the same module more efficient, and for eventual secrecy improvements, also allows types in the same module to be referenced from mangled typerefs without encoding any source-level name information about them.
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.
The mangled name of protocol descriptors was the “protocol composition”
type consisting of a single protocol, which is a little odd. Instead,
use a bare protocol reference (e.g., “6Module5ProtoP”) with the “$S”
prefer to be more in line with nominal type descriptor names while still
making it clear that this is a Swift (not an Objective-C) protocol.
If the nominal type descriptor's resilient superclass flag
is set, the generic parameter offset, vtable start offset
and field offset start offset are all relative to the
start of the class's immedaite members, and not the start
of the class metadata.
Support this by loading the size of the superclass and
adding it to these offsets if the flag is set.
While creating demangled tree for function and tuple types
`_swift_buildDemanglingForMetadata` should use correct format
established by mangler and respected by printer/demangler.
NFC intended. The layout of trailing matter here is getting fairly complex, so it's good to use LLVM's existing library code to keep track of it. We use a fork of llvm's TrailingObjects.h header so that future changes to LLVM don't disturb the ABI of Swift runtime objects that use the template.