My previous change for this issue (033b884de6) did not fix all the
affected code. This gets the rest of them. Thanks for Jason Molenda
for helping with this. rdar://problem/41025365
This greatly improves the ergonomics of writing tests and outweighs the
ability to test which whitespaces get parsed since their parsing
overhead should be minimal.
Tiny start-up time optimization noticed while looking at how we do
PrettyStackTraceProgram. Also add PrettyStackTraceProgram to a few
more of our testing tools, via the new PROGRAM_START macro.
Before this patch, we have one flag (KeepSyntaxInfo) to turn on two syntax
functionalities of parser: (1) collecting parsed tokens for coloring and
(2) building syntax trees. Since sourcekitd is the only consumer of either of these
functionalities, sourcekitd by default always enables such flag.
However, empirical results show (2) is both heavier and less-frequently
needed than (1). Therefore, separating the flag to two flags makes more
sense, where CollectParsedToken controls (1) and BuildSyntaxTree
controls (2).
CollectingParsedToken is always enabled by sourcekitd because
formatting and syntax-coloring need it; however BuildSyntaxTree should
be explicitly switched on by sourcekitd clients.
resolves: rdar://problem/37483076
With more syntax nodes being specialized, we'd like this
straight-forward way to pinpoint unknown entities. This diagnostics
is only issued in -emit-syntax frontend action and swift-syntax-test
invocation.
libSyntax nodes don't maintain absolute source location on each
individual node. Instead, the absolute locations are calculated on
demand with a given root by accumulating the length of all the other
nodes before the target node. This bridging is important for issuing
diagnostics from libSyntax entities.
With the observation that our current implementation of the source
location calculation has multiple bugs, this patch re-implemented this
bridging by using the newly-added syntax visitor. Also, we moved the function
from RawSyntax to Syntax for better visibility.
To test this source location calculation, we added a new action in
swift-syntax-test. This action parses a given file as a
SourceFileSyntax, calculates the absolute location of the
EOF token in the SourceFileSyntax, and dump the buffer from the start
of the input file to the absolute location of the EOF. Finally, we compare
the dump with the original input to ensure they are identical.
- Outlaw duplicate input files, fix driver, fix tests, and add test.
- Reflect that no buffer is present without a (possibly pseudo) named file.
- Reflect fact that every input has a (possible pseudo) name.
- Break up CompilerInstance::setup.
Don't bail on dups.
* Generate libSyntax API
This patch removes the hand-rolled libSyntax API and replaces it with an
API that's entirely automatically generated. This means the API is
guaranteed to be internally stylistically and functionally consistent.
Previously, users of TokenSyntax would always deal with RC<TokenSyntax>
which is a subclass of RawSyntax. Instead, provide TokenSyntax as a
fully-realized Syntax node, that will always exist as a leaf in the
Syntax tree.
This hides the implementation detail of RawSyntax and SyntaxData
completely from clients of libSyntax, and paves the way for future
generation of Syntax nodes.
* Serialize TopLevelDecls as an array of raw syntax nodes, instead of one-after-another.
* Add tests for multiple decls
* Remove extra newlines from test inputs
This patch will allow for serialization of RawSyntax trees to JSON,
which allows external tools to get access to a RawSyntax tree.
This also adds a hook into swift-syntax-test to generate JSON for a
given Swift source file, which will be used in tests in subsequent
commits.