- Switch all the 'self' mutable arguments to take self as @inout, since
binding methods to uncurried functions expose them as such.
- Eliminate the subtype relationship between @inout and @inout(implicit),
which means that we eliminate all sorts of weird cases where they get
dropped (see the updated testcases).
- Eliminate the logic in adjustLValueForReference that walks through functions
converting @inout to @inout(implicit) in strange cases.
- Introduce a new set of type checker constraints and conversion kinds to properly
handle assignment operators: when rebound or curried, their input/result argument
is exposed as @inout and requires an explicit &. When applied directly (e.g.
as ++i), they get an implicit AddressOfExpr to bind the mutated lvalue as an
@inout argument.
Overall, the short term effect of this is to fix a few old bugs handling lvalues.
The long term effect is to drive a larger wedge between implicit and explicit
lvalues.
Swift SVN r11708
Previously, we had an artificial separation between the subexpression
"x" and the context of the expression "x as T". This breaks down when
the subexpression includes a reference to an anonymous closure
argument (e.g., $0) from a single-expression closure. By merging the
systems, we fix the crasher (<rdar://problem/15633178>) and allow
improved type inference for these expressions.
Swift SVN r11235
Rather than performing a two-pass walk over all of the constraints in
the system to attach them to type variables, use the existing type
variable -> constraints mapping in the constraint graph to make this a
faster single-pass process. Also clarify the type bindings a little
bit. Improves type checking time for the standard library by ~3%.
Swift SVN r11098
This shaves about 10% off the number of solution states explored when
type-checking the standard library, although it doesn't improve
overall time by much. In a more targeted benchmark, 1 + 2.0 + 1, we
get a 21% speedup.
Swift SVN r11033