Swiftc port of https://github.com/apple/llvm-project/pull/4207.
This introduces a new flag, `-file-prefix-map` which can be used
instead of the existing `-debug-prefix-map` and `-coverage-prefix-map`
flags, and also remaps paths in index information currently.
llvm/llvm-project d0262c2394f46bb7da2a75529413d625c70908e5 added a new
default bool param to the two constructors in `SmallVectorMemoryBuffer`.
Since `options.OutputPath` is a `const char *` and that can be promoted
to a `bool`, the constructor being called was changed to the first
constructor (with a default buffer name) - promotion is preferred over
conversion.
Convert the various output paths to a `StringRef` - all their uses
converted to `StringRef` anyway. Also specify the default parameter in
order to maintain the old behaviour, which didn't require a null
terminator.
- Add a `[reflection]` bit to `alloc_box` instructions, to indicate that a box
should be allocated with reflection metadata attached.
- Add a `@captures_generics` attribute to SILLayouts, to indicate a type layout
that captures the generic arguments it's substituted with, meaning it can
recreate the generic environment without additional ABI-level arguments, like
a generic partial application can.
Write the real module name for XRefs in swiftmodule files instead of the
exported module name, from `export_as` declarations in module maps.
Swiftmodule files are internal details now, they should represent the
truth.
We keep using the exported module name for the extensions lookup table
as clients should still use the exported name. However we may need to
write both alternatives in the lookup table in the future if extensions
can't be found from clients not importing the exported as module.
rdar://90272035
This ensures that opened archetypes always inherit any outer generic parameters from the context in which they reside. This matters because class bounds may bind generic parameters from these outer contexts, and without the outer context you can wind up with ill-formed generic environments like
<τ_0_0, where τ_0_0 : C<T>, τ_0_0 : P>
Where T is otherwise unbound because there is no entry for it among the generic parameters of the environment's associated generic signature.
We now schedule conformance emissions in basically the same way
we do for types and declarations, which means that we'll emit them
uniquely in the module file instead of redundantly at every use.
This should produce substantially smaller module files overall,
especially for modules that heavily use generics. It also means
that we can remove all the unfortunate code to support using
different abbrev codes for them in different bitcode blocks.
Requirement lists are now emitted inline in the records that need
them instead of as trailing records. I think this will improve
space usage, but mostly it assists in eliminating the problem
where abbrev codes are shared between blocks.
ABI descriptors should always be emitted as sidecars for library-evolution-enabled modules.
However, generating these files requires traversing the entire module (like indexing), which may
hit additional deserialization issues. To unblock builds, this patch introduces a flag to skip
the traversing logic so that we emit an empty ABI descriptor file. The empty file serves as
a placeholder so that build system doesn't need to know the details.
The RequirementSignature generalizes the old ArrayRef<Requirement>
which stores the minimal requirements that a conforming type's
witnesses must satisfy, to also record the protocol typealiases
defined in the protocol.
Swiftmodule loading was previously restricted by compiler tag only for
resilient modules. This left room for resilient modules with a corrupted
control block to pass as non-resilient modules.
Apply the same check for non-resilient modules (so all modules) when
read from a tagged compiler.
rdar://88081456
Store a list of argument effects in a function, which specify if and how arguments escape.
Such effects can be specified in the Swift source code (for details see docs/ReferenceGuides/UnderscoredAttributes.md) or derived in an optimization pass.
For details see the documentation in SwiftCompilerSources/Sources/SIL/Effects.swift.
In addition to the predefined cases, like "readnone", "readonly", etc. support providing a custom string, which will be parsed later.
Also, allow multiple effects attributes to be put onto a function.
The `@exclusivity(unchecked)` attribute can be used on variables to selectively disable exclusivity checking.
For completeness, also the `@exclusivity(checked)` variant is supported: it turns on exclusivity checking for specific variables if exclusivity enforcement is disabled by the command line option.
This new attribute is a missing implementation part of SE-0176 (https://github.com/apple/swift-evolution/blob/main/proposals/0176-enforce-exclusive-access-to-memory.md).
rdar://31121356
Nested archetypes are represented by their base archetype kinds (primary,
opened, or opaque type) with an interface type that is a nested type,
as represented by a DependentMemberType. This provides a more uniform
representation of archetypes throughout the frontend.
Form opened archetype types based on an interface type and existential
type, rather than assuming all OpenedArchetypeType instances only
represent the root. Sink the UUID, existential type, and actual creation
of the opened archetype into the opened generic environment, so we
consistently only create new archetype instances from the generic
environment. This slims down OpenedArchetypeType and makes it work
similarly to the other archetype kinds, as well as generalizing it
to support nested types.
Sink the existential type and UUID of an
As another step toward eliminating NestedArchetypeType, generalize the
representation, construction, and serialization of primary and sequence
archetypes to interface types, rather than generic parameter types.
There are three major changes here:
1. The addition of "SILFunctionTypeRepresentation::CXXMethod".
2. C++ methods are imported with their members *last*. Then the arguments are switched when emitting the IR for an application of the function.
3. Clang decls are now marked as foreign witnesses.
These are all steps towards being able to have C++ protocol conformance.
The first generic parameter of an `OpaqueTypeDecl` was still being used
as the "underlying" interface type of the opaque type, which is
incorrect for both structural and named opaque result types. Eliminate
this notion, because the (declared) interface type already has the
correct structure.
Only ABI checking depended on the old "underlying" type, so rework it to
instead substitute into properly for structural opaque result types as
well.
Deserialization required a small adjustment to eliminate a cycle
because the interface type of an `OpaqueTypeDecl` involves opaque
archetype types, which reference the declaration itself... so
deserialize the interface type later, now that it's correct.