Add support for the `Swift` availability domain, which represents availability
with respect to the Swift runtime. Use of this domain is restricted by the
experimental feature `SwiftRuntimeAvailability`.
This adds the -verify-ignore-unrelated flag. When -verify is used without -verify-ignore-unrelated, diagnostics emitted in buffers other than the main file and those passed with -verify-additional-file (except diagnostics emitted at <unknown>:0) will now result in an error. They were previously ignored. The old behaviour is still available as opt-in using -verify-ignore-unrelated, but by being strict by default it should make it harder to accidentally miss diagnostics.
To avoid unnecessary performance overhead, -verify-additional-file is still required to parse the expected-* directives in files other than the main file.
We already have -suppress-warnings and -suppress-remarks; this patch
adds support for suppressing notes too. Doing so is useful for -verify
tests where we don't really care about the emitted notes.
`span` is not available in all versions of libstd++, so make it a
conditional header. Also adds other missing c++20 headers.
Fixing this triggered an assert when importing a constant initialized
`wchar_t` variable, so that is also fixed. The reason is that `wchar_t`
is mapped to `Unicode.Scalar`, which cannot be directly initialized by
integer literals in Swift, triggering an assert when looking up the
protocol conformance for `_ExpressibleByBuiltinIntegerLiteral`.
rdar://162074714
Beside supporting OSSA, this change significantly simplifies the pass.
The main change is that instead of starting at a closure (e.g. `partial_apply`) and finding all call sites, we now start at a call site and look for closures for all arguments. This makes a lot of things much simpler, e.g. not so many intermediate data structures are required to track all the states.
I needed to remove the 3 unit tests because the things those tests were testing are not there anymore. However, the pass is tested with a lot of sil tests (and I added quite a few), which should give good test coverage.
The old ClosureSpecializer pass is still kept in place, because at that point in the pipeline we don't have OSSA, yet. Once we have that, we can replace the old pass withe the new one.
However, the autodiff closure specializer already runs in the OSSA pipeline and there the new changes take effect.
Lifetime diagnostics may report an error within an implicit initializer or
accessor. The source location is misleading in these cases and causes much
consternation.
Filter out any duplicate notes to help cut down on the noise for
request cycle diagnostics. Some of the note locations here still aren't
great, but this at least stops us from repeating them for each
intermediate request.
Make sure we canonicalize the original type for an ErrorType to ensure
that diagnostic logic can coalesce ErrorTypes that have the same
canonical type.
This adds the implementation required for later changing the default
behaviour of the -verify flag to error when diagnostics are emitted
in buffers other than the main file and files added with
-verify-additional-file. To keep the current behaviour, use the flag
-verify-ignore-unrelated. This flag is added as a no-op so that tests
can start using it before the new behaviour is enabled by default.
If we failed to construct a rewrite system for a protocol, either because
the Knuth-Bendix algorithm failed or because of a request cycle while
resolving requirements, we would end up in a situation where the resulting
rewrite system didn't include all conformance requirements and associated
types, so name lookup would find declarations whose interface types are
not valid type parameters.
Fix this by propagating failure better and just doing nothing in
getReducedTypeParameter().
Fixes rdar://147277543.
Deferred code generation only produces symbols when they are needed.
Expand this out to cover more of the cases where we need them:
* @c/@_cdecl with and without @implementation
* @_expose(Cxx) and @_expose(Wasm)
* @_section and @_used
* (already present) the main entry point
Part of the Embedded Swift linkage model. Also fixes#74328 /
rdar://147207945 along the way.
@c @implementation relies on matching the original C declaration. The
lookup for the original C declaration was doing the wrong kind of
lookup, meaning that it could only find the C declaration if it came
through a bridging header, and not through a normal module import.
Using unqualified lookup here finds the name appropriately.
Clarify the diagnostics here as well to not talk about umbrella and
bridging headers.
Fixes rdar://161909754.
The `_Concurrency` and `_StringProcessing` modules are implementation details of the standard library; to developers, their contents should behave as though they are declared directly within module `Swift`. This is the exact same behavior we expect of cross-import overlays, so treat these modules as though they are cross-import overlays with no bystanding module.
Because these modules don’t re-export the standard library, it’s also necessary to treat `Swift` as a separately imported overlay of itself; do so and make that actually work.