So far, constant propagated arguments could only be builtin literals.
Now we support arbitrary structs (with constant arguments), e.g. `Int`.
This requires a small addition in the mangling scheme for function specializations.
Also, the de-mangling tree now looks a bit different to support a "tree" of structs and literals.
This patch adds a new SymbolicExtendedExistentialTypeRef kind, and
wires it up in TypeDecoder, TypeRefBuilder, TypeLowering, and
ASTDemangler.
This is tested indirectly via the matching LLDB commit.
We sometimes mangle SILFunctionTypes when generating debug info
for reabstraction thunks, and these can have various exotic
parameter and result attributes. Two recent additions were
never plumbed through the mangler, causing assertion failures
when emitting debug info.
Fixes rdar://153730847.
Our Bazel builds have become more strict about libc++
dependencies recently, so these are required to pick up
declarations of `malloc` and `uint32_t`, respectively.
`OpaqueReturnTypeParent` node now references the parent with a mangled parent name, rather than a parent pointer. This makes trees obtained from different demanglers (or calls to `Demangler::demangleSymbol`) for the same symbol equal.
Mangling this information for future directions like component lifetimes
becomes complex and the current mangling scheme isn't scalable anyway.
Deleting this support for now.
We still only parse transferring... but this sets us up for adding the new
'sending' syntax by first validating that this internal change does not mess up
the current transferring impl since we want both to keep working for now.
rdar://128216574
Add a new demangler option which excludes a closure's type signature.
This will be used in lldb.
Closures are not subject to overloading, and so the signature will never be used to
disambiguate. A demangled closure is uniquely identifiable by its index(s) and parent.
Where opaque types are involved, the concrete type signature can be quite complex. This
demangling option allows callers to avoid printing the underlying complex nested
concrete types.
Example:
before: `closure #1 (Swift.Int) -> () in closure #1 (Swift.Int) -> () in main`
after: `closure #1 in closure #1 in main`
Replace use of `snprintf()` with some custom code (this is around 10x
faster on my machine).
Move a few of the `Node` member functions to the header so they're
inlined.
Optimize the `deepEquals()` function by adding an `isSimilarTo()`
method on `Node`; the checks that were happening in the `deepEquals()`
function could be implemented more efficiently by making use of
details of the internal representation of `Node`.
rdar://125739630
This PR implements first set of changes required to support autodiff for coroutines. It mostly targeted to `_modify` accessors in standard library (and beyond), but overall implementation is quite generic.
There are some specifics of implementation and known limitations:
- Only `@yield_once` coroutines are naturally supported
- VJP is a coroutine itself: it yields the results *and* returns a pullback closure as a normal return. This allows us to capture values produced in resume part of a coroutine (this is required for defers and other cleanups / commits)
- Pullback is a coroutine, we assume that coroutine cannot abort and therefore we execute the original coroutine in reverse from return via yield and then back to the entry
- It seems there is no semantically sane way to support `_read` coroutines (as we will need to "accept" adjoints via yields), therefore only coroutines with inout yields are supported (`_modify` accessors). Pullbacks of such coroutines take adjoint buffer as input argument, yield this buffer (to accumulate adjoint values in the caller) and finally return the adjoints indirectly.
- Coroutines (as opposed to normal functions) are not first-class values: there is no AST type for them, one cannot e.g. store them into tuples, etc. So, everywhere where AST type is required, we have to hack around.
- As there is no AST type for coroutines, there is no way one could register custom derivative for coroutines. So far only compiler-produced derivatives are supported
- There are lots of common things wrt normal function apply's, but still there are subtle but important differences. I tried to organize the code to enable code reuse, still it was not always possible, so some code duplication could be seen
- The order of how pullback closures are produced in VJP is a bit different: for normal apply's VJP produces both value and pullback closure via a single nested VJP apply. This is not so anymore with coroutine VJP's: yielded values are produced at `begin_apply` site and pullback closure is available only from `end_apply`, so we need to track the order in which pullbacks are produced (and arrange consumption of the values accordingly – effectively delay them)
- On the way some complementary changes were required in e.g. mangler / demangler
This patch covers the generation of derivatives up to SIL level, however, it is not enough as codegen of `partial_apply` of a coroutine is completely broken. The fix for this will be submitted separately as it is not directly autodiff-related.
---------
Co-authored-by: Andrew Savonichev <andrew.savonichev@gmail.com>
Co-authored-by: Richard Wei <rxwei@apple.com>
This includes runtime support for instantiating transferring param/result in
function types. This is especially important since that is how we instantiate
function types like: typealias Fn = (transferring X) -> ().
rdar://123118061
This library uses GenericMetadataBuilder with a ReaderWriter that can read data and resolve pointers from MachO files, and emit a JSON representation of a dylib containing the built metadata.
We use LLVM's binary file readers to parse the MachO files and resolve fixups so we can follow pointers. This code is somewhat MachO specific, but could be generalized to other formats that LLVM supports.
rdar://116592577
This executable is intended to be installed in the toolchain and act as
an executable compiler plugin just like other 'macro' plugins.
This plugin server has an optional method 'loadPluginLibrary' that
dynamically loads dylib plugins.
The compiler has a newly added option '-external-plugin-path'. This
option receives a pair of the plugin library search path (just like
'-plugin-path') and the corresponding "plugin server" path, separated
by '#'. i.e.
-external-plugin-path
<plugin library search path>#<plugin server executable path>
For exmaple, when there's a macro decl:
@freestanding(expression)
macro stringify<T>(T) -> (T, String) =
#externalMacro(module: "BasicMacro", type: "StringifyMacro")
The compiler look for 'libBasicMacro.dylib' in '-plugin-path' paths,
if not found, it falls back to '-external-plugin-path' and tries to find
'libBasicMacro.dylib' in them. If it's found, the "plugin server" path
is launched just like an executable plugin, then 'loadPluginLibrary'
method is invoked via IPC, which 'dlopen' the library path in the plugin
server. At the actual macro expansion, the mangled name for
'BasicMacro.StringifyMacro' is used to resolve the macro just like
dylib plugins in the compiler.
This is useful for
* Isolating the plugin process, so the plugin crashes doesn't result
the compiler crash
* Being able to use library plugins linked with other `swift-syntax`
versions
rdar://105104850
Remove the forward declaration for `llvm::raw_ostream` as this creates
ambiguity for `__swift::__runtime::llvm::StringRef` and
`llvm::StringRef` as now `llvm` is made visible to the namespace lookup
rules.
* initial
* it works
demangling mostly works
fix dots
printing works
add tests
add conformance to AnyKeyPath
implement SPI
subscripts fully work
comments
use cross platform image inspection
remove unnecessary comment
fix
fix issues
add conditional conformance
add types
try to fix the api-digester test
cr feedback: move impls behind flag, remove addChain(), switch statement, fallthrough instead of if-elses, move import
cr feedback: refactor switch statement
fix #ifdef
reindent, cr feedback: removes manual memory management
fix missing whitespace
fix typo
fix indentation issues
switch to regexes
checks should test in on all platforms
print types in subscripts
add test for empty subscript
Update test/api-digester/stability-stdlib-abi-without-asserts.test
Co-authored-by: Xiaodi Wu <13952+xwu@users.noreply.github.com>
add commas
fix failing test
fix stdlib annotation
cr feedback: remove global, refactor ifdef
cr feedback: switch back to manual memory management
switch to 5.8 macro
add new weakly linked functions to the allowlist
fix one more failing test
more cr feedback
more cr feedback
* fix invisible unicode
The demangling library can't use the error handling from the main runtime
because it isn't always linked with it. However, it's useful to have
some error handling, and in particular to be able to get data into the
crash logs.
This is complicated because of the way the demangling library gets used,
the upshot of which is that I've had to add a second object library just
for libswiftCore's use, so that the demangler will use the runtime's
error handling functions when present, and fall back on its own when
they aren't.
rdar://89139049
Change `SimplifiedUIDemangleOptions` to remove "partial function" prefixes when demangling async coroutine symbols.
This removes the prefixes "await resume partial function" and "suspend resume partial function" from demangled names, in doing so hides the effect of async/coroutine function splitting from stack traces and other symbolication. This output will produce the source level function name.
For example, a symbol that previously would have demangled to:
```
(1) await resume partial function for static Main.main()
```
will, with this change, demangle to:
```
static Main.main()
```
See https://github.com/apple/swift/pull/36978 where `ShowAsyncResumePartial` was introduced for lldb.
rdar://90455541
* [Distributed] Implement func metadata and executeDistributedTarget
dont expose new entrypoints
able to get all the way to calling _execute
* [Distributed] reimplement distributed get type info impls
* [Distributed] comment out distributed_actor_remoteCall for now
* [Distributed] disable test on linux for now
The internal compiler headers should not include swift shim headers. Removing this dependency allows libSwift to import Swift compiler headers (otherwise, we get name conflics, because we import SwiftShims headers twice: from the source includes and build includes).
Because DEMANGLER_ASSERT() might cause the remanglers to return a ManglingError
with the code ManglingError::AssertionFailed, it's useful to have a line number
in the ManglingError as well as the other information. This is also potentially
helpful for other cases where the code is used multiple times in the remanglers.
rdar://79725187
First pass at adding error handling to the actual Remangler. There are
still some assert() calls at this point that I'm thinking about.
rdar://79725187
Mangling can fail, usually because the Node structure has been built
incorrectly or because something isn't supported with the old remangler.
We shouldn't just terminate the program when that happens, particularly
if it happens because someone has passed bad data to the demangler.
rdar://79725187
Compiler:
- Add `Forward` and `Reverse` to `DifferentiabilityKind`.
- Expand `DifferentiabilityMask` in `ExtInfo` to 3 bits so that it now holds all 4 cases of `DifferentiabilityKind`.
- Parse `@differentiable(reverse)` and `@differentiable(_forward)` declaration attributes and type attributes.
- Emit a warning for `@differentiable` without `reverse`.
- Emit an error for `@differentiable(_forward)`.
- Rename `@differentiable(linear)` to `@differentiable(_linear)`.
- Make `@differentiable(reverse)` type lowering go through today's `@differentiable` code path. We will specialize it to reverse-mode in a follow-up patch.
ABI:
- Add `Forward` and `Reverse` to `FunctionMetadataDifferentiabilityKind`.
- Extend `TargetFunctionTypeFlags` by 1 bit to store the highest bit of differentiability kind (linear). Note that there is a 2-bit gap in `DifferentiabilityMask` which is reserved for `AsyncMask` and `ConcurrentMask`; `AsyncMask` is ABI-stable so we cannot change that.
_Differentiation module:
- Replace all occurrences of `@differentiable` with `@differentiable(reverse)`.
- Delete `_transpose(of:)`.
Resolves rdar://69980056.