When type checking, allow the caller to customize the resolution of generic
type parameter types based on the context, for example, by choosing to
substitute in an archetype (or not) and allowing one to resolve a dependent
member reference via a specific archetype.
No actual functionality change here.
Swift SVN r8797
Instead of relying on the subpattern being a well-formed TuplePattern, let's track our own subelements so we can associate them to properties and validate them ourselves.
Swift SVN r8771
We generate a module from .sil, then deserialize the module using
sil-link-all.
Fix serialization and deserialization of CopyAddrInst.
Fix serialization of ProjectExistentialRefInst.
Add registration of ReferenceStorageTypeLayout, which we forgot to register.
We now have testing coverage of 70+ SILInstructions.
Swift SVN r8635
Add a SILLinkage mode "Deserialized" to make sure IRGen will emit
hidden symbols for deserialized SILFunction.
Inside SIL linker, set Linkage to external if we only have a declaration for
a callee function.
Both sil block and decl block in a module can emit an array of substitutions.
To share the serialization between SILSerializer and Serializer, we modify
the interface to pass in the abbreviation codes to write functions and to
pass in a cursor to read functions.
We now correctly handle the serialization of Substitutions in SpecializeInst.
For a deserialized SILFunction, we now temporarily set its SILLocation and
DebugScope to an empty FileLocation. Once mandatory inliner sets the SILLocation
to the location of ApplyInst, a null SILLocation and a null DebugScope
may work for a deserialized SILFunction.
Update testing cases to reflect that we are now inlining transparent functions
from modules, or to disable SILDeserializer for now (I am not sure how to update
those testing cases).
Swift SVN r8582
Introduce an EnumCaseDecl for source fidelity to track the 'case' location and ordering of EnumElementDecls. Parse a comma-separated list of EnumElementDecls after a 'case' token.
Swift SVN r8509
Add serialization/deserialization of the following SILInstructions:
BuiltinFunctionRefInst, IndexRawPointerInst, ModuleInst,
Conversion instructions:
RefToObjectPointerInst, UpcastInst, CoerceInst, AddressToPointerInst,
PointerToAddressInst, ObjectPointerToRefInst, RefToRawPointerInst,
RawPointerToRefInst, RefToUnownedInst, UnownedToRefInst
DestroyAddrInst, LoadInst, StrongReleaseInst, StrongRetainInst,
TupleElementAddrInst, TupleExtractInst
Make getModule in ModuleFile public to be used by SILDeserializer, also
make addModuleRef in Serializer public to be used by SILSerializer.
Update testing case to cover the above SILInstructions.
Swift SVN r8372
Implement the new rules for mapping between selector names and
constructors. The selector for a given constructor is formed by
looking at the names of the constructor parameters:
* For the first parameter, prepend "init" to the parameter name and
uppercase the first letter of the parameter name. Append ':' if
there are > 1 parameters or the parameter has non-empty-tuple type.
* For the remaining parameters, the name of each parameter followed
by ':'.
When a parameter doesn't exist, assume that the parameter name is the
empty string.
And, because I failed to commit it separately, support selector-style
declarations of constructor parameters so that we can actually write
constructors nicely, e.g.:
// selector is initWithFoo:bar:
constructor withFoo(foo : Foo) bar(bar : Bar) { ... }
Swift SVN r8361
Use a worklist in SIL linking to traverse the newly serialized SILFunction.
Add serialization/deserialization of the following SILInstructions:
AllocArray, Apply, FunctionRef, IntegerLiteral, Metatype, StructExtract,
Struct and Tuple.
Make getDecl and getIdentifier in ModuleFile public to be used by
SILDeserializer, also make addDeclRef and addIdentifierRef in Serializer
public to be used by SILSerializer.
Update testing case to cover the above SILInstructions.
TODO: lookupSILFunction should replace the existing empty SILFunction instead
of creating a new SILFunction.
Swift SVN r8339
For PolymorphicFunctionType used in a SILFunction, we don't have a
corresponding Decl to share the parameter list with. In that case,
we set the owning Decl ID to 0 and add a trailing param lists.
We add a helper function to find the TypeAliasDecl for a Builtin type.
If the lookup is expensive, we can cache the lookup.
Deserializing SILBasicBlock and SILInstruction is not implemented yet.
SIL serializer and deserializer are implicitly tested when a module
contains transparant SILFunctions.
Swift SVN r8230
SerializedSILLoader to hold a list of SIL deserializers.
Also add an intial implementation of a linking pass that is run right after
SILGen to link the declaration of SILFunction to the actual definition in
the serialized module.
We add two blocks to the serialized module: a sil index block that
maps identifier to a function ID and also holds a list of function offsets,
and a sil block for the actual SILFunctions. We can probably use subblock
instead of two top-level blocks.
The serialization/de-serialization of the function hash table and the function
offsets are implemented. But we are missing handling of types (see FIXME in
the code).
ModuleFile::Serialized is made public to be used by SIL deserializer, as well
as ModuleFile::getType.
The SIL deserializer holds a pointer to the ModuleFile, it gets the sil cursor
and the sil index cursor from the ModuleFile. The other option is for SIL
deserializer to find the start of the two sil blocks within itself, thus having
less coupling with ModuleFile.
No testing case yet because we are missing handling of types.
Swift SVN r8206
We often won't need the complete substitutions, so only compute them
when needed. This also means that we don't need to serialize them into
module files.
Swift SVN r8194
Teach a BoundGenericType to compute its own substitutions, which
allows AST clients to create new bound generic types without the aid
of the type checker.
This eliminates the TypeChecker::validateTypeSimple() abomination as
well as the need for the BoundGenericType AST validation step. There
is still more cleanup to do in this area.
Note that BoundGenericType::getSubstitutions() now accepts a module
parameter, which is the place from which we will look for
conformances. This is a baby step toward properly modeling the
conformances as part of the bound generic type, and is nowhere near
complete.
Swift SVN r8193
and remove DeclContext base class from FuncDecl, ConstructorDecl and
DestructorDecl
This decreases the number of DeclContexts to 7 and allows us to apply
alignas(8) to DeclContext.
Swift SVN r8186
few SIL instructions types.
This will be tested when we have a SIL deserializer. Testing cases covering
each implemented SIL instruction will be added.
Swift SVN r8094
ConstructorDecl::getBody() and DestructorDecl::getBody() return 'BraceStmt *'.
After changing the AST representation for functions, FuncDecl::getBody() will
return 'BraceStmt *' and FuncDecl::getFuncExpr() will be gone.
Swift SVN r8050
Add SerializeSIL.cpp for basic implementation of a SIL serializer.
serialize, serializeToStream, Serializer::writeToStream, and
Serializer::writeTranslationUnit all take an additional SILModule to pass it
to Serializer::writeSILFunctions.
Serializer::writeSILFunctions goes through all SILFunctions in a SILModule, and
serializes all SILFunctions that are transparent.
Swift SVN r7875
As a bring-up hack, the module serializer would write a special record,
FALL_BACK_TO_TRANSLATION_UNIT, if it encountered something it didn't know
how to serialize. This then directed the deserializer to ignore the
contents of the module file and instead reload the original source file.
Now that we can serialize pretty much everything*, though, we don't need
this, and instead we'd rather know where the serialization coverage has
gaps (by asserting).
Swift SVN r7752
Each nested archetype X.Y corresponds to an associated type named 'Y'
within one of the protocols to which X conforms. Record the associated
type within the archetype itself. When performing type substitutions,
use that associated type to extract the corresponding type witness
rather than looking for the type itself. This is technically more
correct (since we used the type witness for type checking), and a step
toward pulling type substitutions into the AST.
Swift SVN r7624
We previously relied on the type checker to fill in the implementation
types (swift.Slice<T> and swift.Optional<T>, respectively), which
limited our ability to perform type transformations in the AST. Now,
the AST knows how to form these implementation types on demand.
Swift SVN r7587
In Swift, a module is expected to know which libraries it needs, rather than
having this specified by an external module map. While we haven't quite
designed this yet (frameworks get this for free in Clang, for example),
we can at least provide a simple option for the common case of a module
associated with a single library.
This will probably change in the future, so I left in the more general
deserialization code I was working on before simplifying the use case.
A loaded module can in theory specify any arbitrary frameworks or libraries
as dependencies, not just a single dylib.
Swift SVN r7583
...instead of just those that are re-exported. This will be used for
autolinking (and probably few other places).
As part of this, we get two name changes:
(1) Module::getReexportedModules -> getImportedModules
(2) TranslationUnit::getImportedModules -> getImports
The latter doesn't just get modules-plus-access-paths; it also includes
whether or not the import is re-exported. Mainly, though, it just didn't
seem like a good idea to overload this name when the two functions aren't
really related.
No tests yet, will come with autolinking.
Swift SVN r7487
This breaks the type-canonicalization link between a generic parameter
type and the archetype to which it maps. Generic type parameter types
are now separate entities (that can eventually be canonicalized) from
archetypes (rather than just being sugar).
Most of the front end still traffics in archetypes. As a step away
from this, allow us to type-check the generic parameter list's types
prior to wiring the generic type parameter declarations to archetypes,
using the new "dependent" member type to describe assocaited
types. The archetype builder understands dependent member types and
uses them to map down to associated types when building archetypes.
Once we have assigned archetypes, we revert the dependent identifier
types within the generic parameter list to an un-type-checked state
and do the type checking again in the presence of archetypes, so that
nothing beyond the generic-parameter-list checking code has to deal
with dependent types. We'll creep support out to other dependent types
elsewhere over time.
Swift SVN r7462
Previously, we were creating the type corresponding to
class/struct/union declarations as part of creating the declaration
node, which happens at parse time. The main problem with this (at the
moment) occurs with nested nominal types, where we'd end up with the
wrong "parent" type when the type was nested inside an extension
(because the extension hadn't been resolved at the time we accessed
the parent's type). Amusingly, only code completion observed this,
because the canonical type system hid the problem. The churn in the
code-completion tests come from the fact that we now have the proper
declared type for class/struct/union declarations within extensions.
Take a step toward order-independent type checking by setting the type
of a class/struct/union declaration in type checking when we either
find the declaration (e.g., due to name lookup) or walk to the
declaration (in our walk of the whole translation unit to type-check
it), extending the existing TypeChecker::validateTypeDecl() entry
point and adding a few more callers.
The removeShadowedDecls() hack is awful; this needs to move out to the
callers, which should be abstracted better in the type checker anyway.
Incremental, non-obvious step toward fixing the representation of
polymorphic function types. This yak has a *lot* of hair.
Swift SVN r7444
proposal.
When compiling with debug info, build a swiftmodule that contains all the
type decls referenced by DWARF and emit it into a special __apple_swiftast
section in the .o file.
Swift SVN r7398
Make the functions support a wider range of builtins and store types to make
it possible.
This is an optimization - the cached ID will be used for builtin identification,
instead of retrieval of the string name and using it as the key.
Swift SVN r7390
Another baby step toward a proper canonical form for polymorphic
function types: generic parameters will eventually be uniquable by
their depth and index.
Swift SVN r7380
Previously, TypeAliasDecl was used for typealiases, generic
parameters, and assocaited types, which is hideous and the source of
much confusion. Factor the latter two out into their own decl nodes,
with a common abstract base for "type parameters", and push these
nodes throughout the frontend.
No real functionality change, but this is a step toward uniquing
polymorphic types, among other things.
Swift SVN r7345