Fixes a crash in IRGen
TODO: also fix the demangler/remangler part of this mangling change.
Currently it's not a problem because we never demangle such a symbol (it's even not round-trip checked in Mangler::verify).
rdar://problem/50405691
New(er) grammar:
// same module as conforming type, or non-unique
protocol-conformance-ref ::= protocol 'HP'
// same module as protocol
protocol-conformance-ref ::= protocol 'Hp'
// retroactive
protocol-conformance-ref ::= protocol module
We don't make use of this distinction anywhere yet, but we could in
the future.
Fix to 510b64fcd5. The mangling operator "HP" has to distinguish
between "protocol" and "protocol module", not between the presence
or absence of protocol-conformance-ref. New grammar:
protocol-conformance-ref ::= protocol
protocol-conformance-ref ::= protocol module 'HP'
rdar://problem/46735592, again
Due to some unfortunate refactoring, protocol-conformance-ref is a
nonterminal in the mangling grammar that doesn't have its own
operator:
```
protocol-conformance-ref ::= protocol module?
```
Both "module" and "protocol" can be an "identifier", which introduces
a mangling collision. Address the mangling collision by using the
operator "HP".
Fixes rdar://problem/46735592.
Start emitting associated conformance requirement descriptors for
inherited protocols, so we have a symbol to reference from resilient
witness tables and mangled names in the future.
Use a general ‘type’ production for the conforming type of an associated
witness table accessor mangling, so that we can mangle base protocol
witness table accessors. These entities are always internal symbols, so the
mangling itself doesn’t affect the ABI.
Always use mangled type names to represent type metadata in keypath patterns.
For generic types, use the generic environment to pull substituted types
from the instantiation arguments.
Finishes the type metadata part of rdar://problem/38038799.
Switch key path metadata over to mangled names for each of the places it
refers to either a type metadata accessor or a witness table accessor. For
now, the mangled name is a symbolic reference to the existing accessors.
Part of rdar://problem/38038799.
The current representation of an associated conformance in a witness
tables (e.g., Iterator: IteratorProtocol within a witness table for
Sequence) is a function that the client calls.
Replace this with something more like what we do for associated types:
an associated conformance is either a pointer to the witness table (once
it is known) or a pointer to a mangled name that describes that
conformance. On first access, demangle the mangled name and replace the
entry with the resulting witness table. This will give us a more compact
representation of associated conformances, as well as always caching
them.
For now, the mangled name is a sham: it’s a mangled relative reference to
the existing witness table accessors, not a true mangled name. In time,
we’ll extend the support here to handle proper mangled names.
Part of rdar://problem/38038799.
TargetGenericParamRef is a specialized structure used to describe the
subject of a generic requirement, e.g., the “T.Assoc” in “T.Assoc: P”.
Replace it with a mangled name, for several reasons:
1) Mangled type names are also fairly concise, can often be shared, and
are a well-tested path
2) Mangled type names can express any type, which might be useful in the
future
3) This structure doesn’t accommodate specifically stating where the
conformances come from (to extract associated type witnesses). Neither
can mangled names, but we’d like to do that work in only one place.
This change exposed an existing bug where we improperly calculated the
generic parameter counts for extensions of nested generic types. Fix that
bug here (which broke an execution test).
A dynamically replaceable function calls through a global variable that
holds the function pointer.
struct ChainEntry {
void *(funPtr)();
struct ChainEntry *next;
}
ChainEntry dynamicallyReplaceableVar;
void dynamicallyReplaceableFunction() {
dynamicallyReplaceableVar.funPtr()
}
dynamic replacements will be chainable so the global variable also
functions as the root entry in the chain of replacements.
A dynamic replacement functions can call the previous implementation by
going through its chain entry.
ChainEntry chainEntryOf_dynamic_replacement_for_foo;
void dynamic_replacement_for_foo() {
// call the previous (original) implementation.
chainEntryOf_dynamic_replacement_for_foo.funPtr();
}
Change the retroactive conformance mangling to use the new
any-protocol-conformance mangling, which maintains more information about
concrete conformances. Specifically, it maintains conformance information
for conditional requirements. It also uses the protocol-conformance-ref
production that will eventually allow symbolic references to protocol
conformance descriptors.
While here, extend the “is retroactive” check during mangling to look for
retroactive conformances in the conditional requirements of a conformance.
The immediate conformance might not be retroactive, but its specialization
might depend on a retroactive conformance. Mangle these as “retroactive”, so
we can correctly reconstruct the exact type.
Introduce complete mangling for references to protocol conformances:
* Mangle requirements of conditional conformances when present.
* Mangle conformance access paths for generic environment-dependent
conformances.
* Abstract protocol conformance references so we can introduce
symbolic references for them.
Witness table accessors return a witness table for a given type's
conformance to a protocol. They are called directly from IRGen
(when we need the witness table instance) and from runtime conformance
checking (swift_conformsToProtocol digs the access function out of the
protocol conformance record). They have two interesting functions:
1) For witness tables requiring instantiation, they call
swift_instantiateWitnessTable directly.
2) For synthesized witness tables that might not be unique, they call
swift_getForeignWitnessTable.
Extend swift_instantiateWitnessTable() to handle both runtime
uniquing (for #2) as well as handling witness tables that don't have
a "generic table", i.e., don't need any actual instantiation. Use it
as the universal entry point for "get a witness table given a specific
conformance descriptor and type", eliminating witness table accessors
entirely.
Make a few related simplifications:
* Drop the "pattern" from the generic witness table. Instead, store
the pattern in the main part of the conformance descriptor, always.
* Drop the "conformance kind" from the protocol conformance
descriptor, since it was only there to distinguish between witness
table (pattern) vs. witness table accessor.
* Internalize swift_getForeignWitnessTable(); IRGen no longer needs to
call it.
Reduces the code size of the standard library (+assertions build) by
~149k.
Addresses rdar://problem/45489388.
Extending the mangling of symbolic references to also include indirect
symbolic references. This allows mangled names to refer to context
descriptors (both type and protocol) not in the current source file.
For now, only permit indirect symbolic references within the current module,
because remote mirrors (among other things) is unable to handle relocations.
Co-authored-by: Joe Groff <jgroff@apple.com>
Collapse the generic witness table, which was used only as a uniquing
data structure during witness table instantiation, into the protocol
conformance record. This colocates all of the constant protocol conformance
metadata and makes it possible for us to recover the generic witness table
from the conformance descriptor (including looking at the pattern itself).
Rename swift_getGenericWitnessTable() to swift_instantiateWitnessTable()
to make it clearer what its purpose is, and take the conformance descriptor
directly.
Indicate whether a particular associated type witness is a default (whose
mangled name is relative to the protocol) vs. being supplied as part of the
conformance (whose mangled name is relative to the conforming type). The
use of pointer identity to distinguish these cases can fail due to the
coalescing of these linker symbols.
The mangling of associated type paths was only adding the names of
associated types, and not their enclosing protocols. This led to mangling
collisions that could lead to corrupted metadata. In the standard
library, for example, the generic requirements for the
Unicode _ParsingIterator in the standard library ended up encoding an
access to Sequence.Element rather than IteratorProtocol.Element due
to the mangling conflict.
Part of SR-7553 / rdar://problem/39769906.
Default associated conformance accessors will be used in default
witness tables to fill in associated conformances for defaulted
associated types. Add (de|re|)mangling support for them and make them
linking entities in IRGen.
When an associated type witness has a default, record that as part of
the protocol and emit a default associated type metadata accessor into the
default witness table. This allows a defaulted associated type to be
added to a protocol resiliently.
This is another part of rdar://problem/44167982, but it’s still very
limiting because the new associated type cannot have any conformances.
Introduce an alias that refers one element prior to the start of a
protocol descriptor’s protocol requirements. This can be subtracted from
an associated type descriptor address to determine the offset of the
associated type accessor within a corresponding witness table. The code
generation for the latter is not yet implemented.