When printing a swiftinterface, represent opaque result types using an attribute that refers to
the mangled name of the defining decl for the opaque type. To turn this back into a reference
to the right decl's implicit OpaqueTypeDecl, use type reconstruction. Since type reconstruction
doesn't normally concern itself with non-type decls, set up a lookup table in SourceFiles and
ModuleFiles to let us handle the mapping from mangled name to opaque type decl in type
reconstruction.
(Since we're invoking type reconstruction during type checking, when the module hasn't yet been
fully validated, we need to plumb a LazyResolver into the ASTBuilder in an unsightly way. Maybe
there's a better way to do this... Longer term, at least, this surface design gives space for
doing things more the right way--a more request-ified decl validator ought to be able to naturally
lazily service this request without the LazyResolver reference, and if type reconstruction in
the future learns how to reconstruct non-type decls, then the lookup tables can go away.)
MetadataLookup gives special treatment to imported Objective-C classes,
since there's no nominal type descriptor and metadata is obtained
directly by calling into the Objective-C runtime.
Remote reflection also gives special treatment to imported Objective-C
classes; they don't have field descriptors.
However, the ASTDemangler needs to treat them like ordinary classes,
in particular it wants to preserve the generic arguments here so that
we can round-trip debug info.
Debug info uses a special mangling where type aliases can be
represented without being desugared; attempt to reconstruct
the TypeAliasType in this case.
It's clever how it leverages the type checker to check generic arguments,
but calling checkGenericArguments() would have been simpler, and it doesn't
work for interface types anyway, so we would fail to demangle those.
Let's just cut this all out for now and build a BoundGenericType directly.