This was partially implemented but the check looked at the lowered
types and not the AST types, and DynamicSelfType is erased at the
top level of a lowered type.
Also use the new mangling for reabstraction thunks with self, to
ensure we don't emit the same symbol with two different lowered
types.
Fixes <https://bugs.swift.org/browse/SR-10309>, <rdar://problem/49703441>.
When emitting metadata for a Swift-defined @objc protocol that has
provided a specific Objective-C name (e.g., via @objc(renamed)),
mangle such protocols using their Objective-C names so they can be
found at runtime.
Only do this for metadata, because doing it anywhere else would cause
an ABI break. Fixes rdar://problem/47877748.
Add an IRGen flag to disable this verification, since it doesn't work from within
lldb itself for some reason, and I don't want to investigate it right now.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Introduce complete mangling for references to protocol conformances:
* Mangle requirements of conditional conformances when present.
* Mangle conformance access paths for generic environment-dependent
conformances.
* Abstract protocol conformance references so we can introduce
symbolic references for them.
Extending the mangling of symbolic references to also include indirect
symbolic references. This allows mangled names to refer to context
descriptors (both type and protocol) not in the current source file.
For now, only permit indirect symbolic references within the current module,
because remote mirrors (among other things) is unable to handle relocations.
Co-authored-by: Joe Groff <jgroff@apple.com>
The mangling of generic typealiases was using the underlying type’s generic
arguments rather than the generic arguments for the typealias itself.
Directly encode the generic arguments from the substitution map instead.
Also address some related issues with remangling generic typealiases.
Fixes rdar://problem/41444286.
Protocol name mangling didn’t always go through a path that allowed the use
of standard substitutions. Enable standard substitutions for protocol name
manglings where they make sense.
Removes ~277k from the standard library binary size.
This makes resolving mangled names to nominal types in the same module more efficient, and for eventual secrecy improvements, also allows types in the same module to be referenced from mangled typerefs without encoding any source-level name information about them.
A "retroactive" protocol conformance is a conformance that is provided
by a module that is neither the module that defines the protocol nor
the module that defines the conforming type. It is possible for such
conformances to conflict at runtime, if defined in different modules
that were not both visible to the compiler at the same time.
When mangling a bound generic type, also mangle retroactive protocol
conformances that were needed to satisfy the generic requirements of
the generic type. This prevents name collisions between (e.g.) types
formed using retroactive conformances from different modules. The
impact on the size of the mangling is expected to be relatively small,
because most conformances are not retroactive.
Fixes the ABI part of rdar://problem/14375889.
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.
Except GenericEnvironment.h, because you can't meaningfully use a
GenericEnvironment without its signature. Lots less depends on
GenericSignature.h now. NFC
- Allow them to use substitutions.
- Consistently use 'a' as a mangling operator.
- For generic typealiases, include the alias as context for any generic
parameters.
Typealiases don't show up in symbol names, which always refer to
canonical types, but they are mangled for debug info and for USRs
(unique identifiers used by SourceKit), so it's good to get this
right.
This can show up when trying to generate USRs for a document with
errors in it. This isn't a great answer because the names it generates
aren't unique (there may be more than one nameless entity with the
same type), but it at least generates valid mangled names.
When generating mangled names for purposes other than USRs, nameless
entities are now checked for by an assertion.
This fixes a crash while building the Swift standard library when
partial specializations are enabled.
Eventually we should get rid of needing the DeclContext in the mangled
typename at all, and this is one step towards that goal.
rdar://problem/31253373
Simply mangling the derived method is no longer sufficient. Now also
mangle the base method, so that eventually we handle this sort of
scenario:
class Base {
// introduces: Base.method
func method(_: Int, _: Int) {}
}
class First : Base {
// overrides: Base.method
// introduces: First.method
override func method(_: Int?, _: Int) {}
}
class Second : First {
// overrides: Base.method, First.method
// introduces: Second.method
override func method(_: Int?, _: Int?) {}
}
Here, the override of Base.method by Second.method and the
override of First.method by Second.method require distinct
manglings even though the derived method (Second.method) is
the same in both cases.
Note that while the new mangling is longer, vtable thunks are
always emitted with private linkage, so with the exception of
the standard library which is built with -sil-serialize-all
they will not affect the size of dylibs.
The standard library itself has very few classes so it doesn't
matter there either.
This patch doesn't actually add any support to introduce new
vtable entries for methods that override; this is coming up
next.