This allows us to dump it in the generated interface, though it's
still not syntax-highlighted. This is necessary for textual module
interfaces, but it's also just a longstanding request for Xcode's
"Generated Interface" / "Jump to Definition" feature.
rdar://problem/18675831
Use ExtensionDecl::getExtendedNominal() to wire up extensions to their
nominal types early in type checking (the bindExtensions()) operation,
rather than going through type validation to do so.
Introduce a request for ExtensionDecl::getExtendedNominal() that
uses TypeRepr-based resolution to find the extended nominal
type declaration without going through type resolution.
Introduce ExtensionDecl::getExtendedNominal() to provide the nominal
type declaration that the extension declaration extends. Move most
of the existing callers of the callers to getExtendedType() over to
getExtendedNominal(), because they don’t need the full type information.
ExtensionDecl::getExtendedNominal() is itself not very interesting yet,
because it depends on getExtendedType().
ClassDecl::getSuperclass() produces a complete interface type describing the
superclass of a class, including any generic arguments (for a generic type).
Most callers only need the referenced ClassDecl, which is (now) cheaper
to compute: switch those callers over to ClassDecl::getSuperclassDecl().
Fixes an existing test for SR-5993.
Introduce three new requests for name lookup operations that avoid performing
type checking/semantic analysis. They work using syntactic information
(e.g., TypeReprs) and AST-level name lookup operations that will (eventually)
avoid and calls back into type checking. The new requests are:
* Retrieve the superclass declaration of a protocol or class declaration. Use
this request for ClassDecl::getSuperclassDecl() and
ProtocolDecl::getSuperclassDecl().
* Retrieve the types “directly referenced” by a particular location in
an inheritance clause. This query is based on looking at the TypeReprs
and performing fairly-minimal lookup, so it does not involve any Type
computations.
* Retrieve the types “directly referenced” by the underlying type of
a typealias. This query allows us to desugar a typealias without forming
a type.
Along with these is a core operation to transform a set of TypeDecl*s
into a set of NominalTypeDecl*s, looking through typealiases, and
without involving Type at all. The superclass-decl request does this
to find a ClassDecl; other requests will eventually do this to (e.g.)
find all of the protocols mentioned in an inheritance clause.
...and collapse StaticVar/ClassVar and StaticLet/ClassLet into
StaticProperty/ClassProperty.
"var" and "let" aren't great nouns to use in diagnostics to begin with,
especially alongside semantic terms like "instance method". Focus on
the type vs. non-type aspect instead with "property", which better
matches how people talk about member vars (and lets) anyway.
We handle layout through finalization of the declaration,
which already has its own approach to eliminating redundant work.
We don’t need an extra bit getting in the way.
This gets adjustAccessLevelForProtocolExtension, a hack of sorts to
begin with, out of ValueDecl's general API, and down to a helper for
isAccessibleFrom and isSetterAccessibleFrom. (The only reason these
two don't go through access scopes is as an optimization.)
...to push people towards getFormalAccessScope. The one use case that
isn't covered by that is checking whether a declaration behaves as
'open' in the current file; I've added ValueDecl::hasOpenAccess to
handle that specific case.
No intended functionality change.
For now, the accessors have been underscored as `_read` and `_modify`.
I'll prepare an evolution proposal for this feature which should allow
us to remove the underscores or, y'know, rename them to `purple` and
`lettuce`.
`_read` accessors do not make any effort yet to avoid copying the
value being yielded. I'll work on it in follow-up patches.
Opaque accesses to properties and subscripts defined with `_modify`
accessors will use an inefficient `materializeForSet` pattern that
materializes the value to a temporary instead of accessing it in-place.
That will be fixed by migrating to `modify` over `materializeForSet`,
which is next up after the `read` optimizations.
SIL ownership verification doesn't pass yet for the test cases here
because of a general fault in SILGen where borrows can outlive their
borrowed value due to being cleaned up on the general cleanup stack
when the borrowed value is cleaned up on the formal-access stack.
Michael, Andy, and I discussed various ways to fix this, but it seems
clear to me that it's not in any way specific to coroutine accesses.
rdar://35399664
Now, an AbstractFunctionDecl always stores a single parameter list.
Furthermore, ConstructorDecl and DestructorDecl always store a
ParamDecl for 'self'.
FuncDecl only has a 'self' if it is a member of a nominal type or
extension, so we tail-allocate the storage for it.
There are two general constructor forms here:
- One took the number of parameter lists, to be filled in later.
Now, this takes a boolean indicating if there is an implicit
'self'.
- The other one took the actual parameter lists and filled them
in right away. This now takes a separate 'self' ParamDecl and
ParameterList.
Instead of storing the number of parameter lists, an
AbstractFunctionDecl now only needs to store if there is a 'self'
or not.
I've updated most places that construct AbstractFunctionDecls to
properly use these new forms. In the ClangImporter, there is
more code that remains to be untangled, so we continue to build
multiple ParameterLists and unpack them into a ParamDecl and
ParameterList at the last minute.
Returns "the" parameter list for the function. The other methods,
such as getParameterLists(), getParameterList(unsigned) and
getNumParameterLists() are going away.
Constructors and methods had two parameter lists, one for self and one
for the formal parameters. Destructors only had one parameter list,
which introduced an annoying corner case.
Separate out the semantic state for the ‘dynamic’ check (from the
presence of the attribute), and move all of the computation of the
‘dynamic’ bit into the request-evaluator.
In the process, this fixes a bug where implicitly-synthesized initializers
in subclasses of imported classes would not be implicitly made ‘final’.
Introduce a new request kind to capture the computation of the set of
overridden declarations of a given declaration, eliminating the
stateful “setOverriddenDecls()” calls from the type checker.
I picked accessors that not only return the same result every time,
but also do no interesting validation work with possible side effects.
We have a lot more accessors that return the same result but also
force a bunch of things to be loaded or diagnostics to be emitted, and
I didn't want to change the behavior of any of those.
No intended functionality change; this is just supposed to be a small
optimization hint.
When users override a SDK function whose parameter types have been changed,
we should introduce a local variable in the body of the function definition
to shadow the changed parameter. Also, a proper conversion function should
be applied to bridge the parameter to the local variable.
rdar://41828411
Pass through the location of the equal '=' token for pattern binding decl entries, and use this location for the immediate deallocation diagnostic. Previously, we were just diagnosing on the start of the initialiser expression.
Additionally, this commit moves the call to `diagnoseUnownedImmediateDeallocation` from `typeCheckBinding` to `typeCheckPatternBinding`. This not only gives us easier access to the PBD entry, but also avoids calling the diagnostic logic for statement conditions such as `if let x = <expr>`. We currently never diagnose on these anyway, as the 'weak' and 'unowned' keywords cannot be applied to such bindings.
Resolves [SR-7340](https://bugs.swift.org/browse/SR-7340).
It’s quite common to emit a diagnostic about a specific declaration, where the
“location” of the is the declaration itself. Add a helper method
Decl::diagnose() to get the diagnostics engine from the ASTContext and
emit a diagnostic associated with this declaration.
Because subscripts can be generic, this isn't quite as universally useful
as you might think; it's pretty much only useful when mapping types into
the context of the declaration, e.g. into an accessor.
Several kinds of declarations can override other declarations, but the
computation and storage for these “overridden” declarations was scattered in
at least 3 different places, with different resolution paths. Pull them
all together into two bits of LazySemanticInfo in ValueDecl (“have we computed
overrides?” and “are there any overrides?”), with a side table for the
actual list of overrides.
One side effect here is that the AST can now represent multiple overridden
declarations, although only associated type declarations track this
information.
Start using LazyResolver::resolveOverriddenDecl() more consistently, unifying
it with the separate path we had for associated type overrides. All of this
is staging for a move to the request-evaluator for overridden declaration
computation.