...not if it's newer than its output .o file. This handles cases where the
object file is generated too quickly (rdar://problem/19404140) or when you
revert to a previous version of the file, mtime intact (rdar://problem/19720146).
There's a lot of test churn here; the only real new test is the backwards
mtime update in one-way.swift.
Swift SVN r29584
Together with -wmo it enables multi-threaded compilation.
I didn't want to reuse the -j option for this, because -num-threads (even if n == 1) does change the generated code.
For details see commit message of r25930.
Swift SVN r26258
This is mostly just a matter of not throwing away mtimes we were already
looking up. We can compare these values to the mtimes of cross-module
dependencies to find out what's been updated.
Part of rdar://problem/19270920
Swift SVN r24336
r23968 wrote out a record of which source files were included in a build,
and whether they were succesfully compiled or not...and if not, whether
they were out of date because of a cascading or non-cascading dependency.
This commit uses that information to decide what files might need to be
rebuilt even if a particular input doesn't change and doesn't appear to
have any changed dependencies. The two interesting cases are:
- A file was going to be built last time, but the build was halted
because of an error. Build it this time.
- One of the files was removed and thus we've lost a source of dependency
information; rebuild everything!
rdar://problem/19270980
Swift SVN r24018
The Swift compiler is always fed the entire list of files in a module.
If it's told to track dependencies, though, it should look to see if it
actually needs to recompile all of its inputs. The first step in this is
to see which files are actually dirty, which it does by comparing the mtime
of each source file with the mtime of its output object file. If a source
file is not dirty, it only needs to be rebuilt if it depends on something
in a dirty file.
Nothing actually uses this information yet, but we can print it with
-driver-print-bindings!
Swift SVN r23221
...and rename Command to Job (previously the name of the base class).
We never generated job lists directly contained in other job lists, so
let's not even worry about this case. We may some day need to break Job
out into separate subclasses (Clang has Command and FallbackCommand in
addition to JobList), but we should be able to keep the list separate.
No intended functionality change.
Swift SVN r23144
llvm::Optional lives in "llvm/ADT/Optional.h". Like Clang, we can get
Optional in the 'swift' namespace by including "swift/Basic/LLVM.h".
We're now fully switched over to llvm::Optional!
Swift SVN r22477
This matches Clang's behavior, though this implementation does not check
that it's actually on a platform that uses dsymutil.
<rdar://problem/16012971>
Swift SVN r20529
This will allow the driver to specify the location for, among other things, the partial swiftmodule generated by a single frontend invocation.
Swift SVN r12449
- Added a couple of new targets:
- libswiftDriver, which contains most of the driver implementation
- swift_driver, which produces the actual executable
- Added centralized version information into libswiftBasic.
- Added a new "Driver Design & Internals" document, which currently describes
the high-level design of the Swift driver.
- Implemented an early version of the functionality of the driver, including
versions of the Parse, Pipeline, Bind, Translate, and Execute driver stages.
Parse, Pipeline, and Bind are largely implemented; Translate and Execute are
early placeholders. (Translate produces "swift_driver --version" and "ld -v"
commands, while Execute performs all subtasks sequentially, rather than in
parallel.)
This is just the starting point for the Swift driver. Tests for the existing
behavior are forthcoming.
Swift SVN r10933