(also referred to as flow-sensitive mode) so that the evaluator
can be used by clients to constant evaluate instructions in a
SILFunction body one by one following the flow of control.
The new pass is based on existing asserts in DiagnoseStaticExclusivity.
They were compiled out in release builds and only checked for captures of
inout parameters. This patch converts the assertions into diagnostics and
adds checks for captures of non-escaping function values.
Unlike the Sema-based checks that this replaces, the new code handles
transitive captures from recursive local functions, which means certain
invalid code that used to compile will now be rejected with an error.
The new analysis also looks at the ultimate usages of a local function
instead of just assuming all local functions are escaping, which fixes
issues where the compiler would reject valid code.
Fixes a bunch of related issues, including:
- <rdar://problem/29403178>
- <https://bugs.swift.org/browse/SR-8546> / <rdar://problem/43355341>
- <https://bugs.swift.org/browse/SR-9043> / <rdar://problem/45511834>
yields in generalized accessors: _read and _modify, which are
yield-once corountines. This pass is based on the existing SIL verifier
checks but diagnoses only those errors that can be introduced by programmers
when using yields.
<rdar://43578476>
This normalizes the creation of pass pipelines by ensuring that all pass
pipelines take a SILOption instead of only some. It also makes it so that we do
not need to propagate options through various pipeline creation helpers.
This will let me strip ownership from non-transparent functions at the beginning
of the perf pipeline. Then after we serialize, I will run OME on the transparent
functions. Otherwise, we can not perform mandatory inlining successfully since
we can not inline ossa into non-ossa functions.
I discovered while updating PMO for ownership that for ~5 years there has been a
bug where we were treating copy_addr of trivial values like an "Assign" (in PMO
terminology) of a non-trivial value and thus stopping allocation
elimination. When I fixed this I discovered that this caused us to no longer
emit diagnostics in a predictable way. Specifically, consider the following
swift snippet:
var _: UInt = (-1) >> 0
Today, we emit a diagnostic that -1 can not be put into a UInt. This occurs
since even though the underlying allocation is only stored into, the copy_addr
assign keeps it alive, causing the diagnostics pass to see the conversion. With
my fix though, we see that we are only storing into the allocation, causing the
allocation to be eliminated before the constant propagation diagnostic pass
runs, causing the diagnostic to no longer be emitted.
We should truly not be performing this type of DCE before we emit such
diagnostics. So in this commit, I split the pass into two parts:
1. A load promotion pass that performs the SSA formation needed for SSA based
diagnostics to actually work.
2. An allocation elimination passes that run /after/ SSA based diagnostics.
This should be NFC since the constant propagation SSA based diagnostics do not
create memory operations so the output should be the same.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
General case:
begin_access A
...
strong_release / release_value / destroy
end_access
The release instruction can be sunk below the end_access instruction,
This extends the lifetime of the released value, but, might allow us to
Mark the access scope as no nested conflict.
General case:
—
begin_access A (may or may not have no_nested_conflict)
load/store
end_access
apply // may have a scoped access that conflicts with A
begin_access A [no_nested_conflict]
load/store
end_access A
—
The second access scope does not need to be emitted.
NOTE: KeyPath access must be identified at the top-level, non-inlinable stdlib entry point.
As such, The sodlib entry pointed is annotated by a new @_semantics that is equivalent to inline(never)
Introduce an "early redundant load elimination", which does not optimize loads from arrays.
Later array optimizations, like ABCOpt, get confused if an array load in a loop is converted to a pattern with a phi argument.
This problem was introduced with accessors.
rdar://problem/44184763
This is a simple "utility" pass that canonicalizes SSA SILValues with
respect to copies and destroys. It is a self-contained, provably
complete pass that eliminates spurious copy_value instructions from
scalar SSA SILValues. It fundamentally depends on ownership SIL, but
otherwise can be run efficiently after any other pass. It separates
the pure problem of handling scalar SSA values from the more important
and complex problems:
- Promoting variables to SSA form (PredictableMemOps and Mem2Reg
partially do this).
- Optimizing copies within "SIL borrow" scopes (another mandatory pass
will be introduced to do this).
- Composing and decomposing aggregates (SROA handles some of this).
- Coalescing phis (A BlockArgumentOptimizer will be introduced as part
of AddressLowering).
- Removing unnecessary retain/release when nothing within its scope
may release the same object (ARC Code Motion does some of this).
Note that removing SSA copies was more obviously necessary before the
migration to +0 argument convention.
To do so this commit does a few different things:
1. I changed SILOptFunctionBuilder to notify the pass manager's logging
functionality when new functions are added to the module and to notify analyses
as well. NOTE: This on purpose does not put the new function on the pass manager
worklist since we do not want to by mistake introduce a large amount of
re-optimizations. Such a thing should be explicit.
2. I eliminated SILModuleTransform::notifyAddFunction. This just performed the
operations from 1. Now that SILOptFunctionBuilder performs this operation for
us, it is not needed.
3. I changed SILFunctionTransform::notifyAddFunction to just add the function to
the passmanager worklist. It does not need to notify the pass manager's logging
or analyses that a new function was added to the module since
SILOptFunctionBuilder now performs that operation. Given its reduced
functionality, I changed the name to addFunctionToPassManagerWorklist(...). The
name is a little long/verbose, but this is a feature since one should think
before getting the pass manager to rerun transforms on a function. Also, giving
it a longer name calls out the operation in the code visually, giving this
operation more prominance when reading code. NOTE: I did the rename using
Xcode's refactoring functionality!
rdar://42301529
I am going to add the code in a bit that does the notifications. I tried to pass
down the builder instead of the pass manager. I also tried not to change the
formatting.
rdar://42301529
This name makes it clear that the function has not yet been deleted and also
contrasts with the past tense used in the API notifyAddedOrModifiedFunction to
show that said function has already added/modified the function.
The name notifyAddFunction is actively harmful since the pass manager uses this
entrypoint to notify analyses of added *OR* modified functions. It is up to the
caller analysis to distinguish in between these cases.
I am not vouching for the design, just trying to make names match the
current behavior.
I am doing this so I can start writing DI tests without this lowering occuring.
There never was a real reason for this code to be in DI beyond convenience. Now
it just makes writing tests more difficult. To prevent any test delta, I changed
all current DI tests to run this pass after DI.
There are ~100 significant benchmark regressions (of ~350) with -O
-enforce-exclusivity=checked.
This optimization roughly cuts the overhead in half for almost all of those
regressions. These are the top 30 improvements with the optimization enabled.
XorShift....................................................2.83x
ReversedArray...............................................2.76x
RangeIterationSigned........................................2.67x
ExclusivityGlobal...........................................2.57x
Random......................................................2.44x
ReversedDictionary..........................................2.41x
GeekbenchGEMM...............................................2.35x
ArrayInClass................................................2.31x
StringWalk..................................................2.29x
Ary.........................................................2.25x
Ary3........................................................2.25x
Ary2........................................................2.21x
MultiFileTogether...........................................2.17x
MultiFileSeparate...........................................2.17x
RecursiveOwnedParameter.....................................2.14x
LevenshteinDistance.........................................2.04x
HashTest....................................................1.97x
Voronoi.....................................................1.94x
NopDeinit...................................................1.92x
Life........................................................1.89x
Richards....................................................1.84x
Rectangles..................................................1.74x
MatMul......................................................1.71x
LinkedList..................................................1.51x
GeekbenchFFT................................................1.47x
Xcbuild_OutputByteStreamPerfTests...........................1.39x
ObjectAllocation............................................1.33x
MapReduceLazyCollection.....................................1.30x
Prims.......................................................1.28x
CharIndexing_tweet_unicodeScalars_Backwards.................1.28x
An interprocedural analysis pass that summarizes the dynamically
enforced formal accesses within a function. These summaries will be
used by a new AccessEnforcementOpts pass to locally fold access scopes
and remove dynamic checks based on whole module analysis.
I am going to be adding logic here to enable apple/swift#1550 to be completed.
The rename makes sense due to precedent from LLVM's codegen prepare and also
since I am going to be expanding what the pass is doing beyond just "cleaning
up". It is really a grab bag pass for performing simple transformations that we
do not want to pollute IRGen's logic with.
https://github.com/apple/swift/pull/15502
rdar://39335800
As a first step to getting mandatory inlining out of the business
of 'linking' (walking the function graph and deserializing all
referenced functions), add a new optimizer pass which links
everything in the mandatory pipeline.
For now this is mostly NFC, except it regresses an optimization
I made recently by linking in bodies of methods of deserialized
vtables eagerly. This will be addressed in upcoming patches.
As a first step to getting mandatory inlining out of the business
of 'linking' (walking the function graph and deserializing all
referenced functions), add a new optimizer pass which links
everything in the mandatory pipeline.
For now this is mostly NFC, except it regresses an optimization
I made recently by linking in bodies of methods of deserialized
vtables eagerly. This will be addressed in upcoming patches.
To replace the code in DI and eventually remove PostponedCleanup in a
follow-up.
When SILGen emits ``convert_escape_to_noescape [not_guaranteed]
%operand`` instructions it assumes that a later SIL pass (this pass)
comes along and inserts retain_value/release_value instructions such that
the lifetime of the operand for the duration of the trivial closure
result.
This commit introduces the pass but does not yet use it.
It was only used in a few tests. Those tests now use -emit-sil instead
of -emit-silgen, with some functions marked @_transparent and a few
CHECK: lines changed now that the mandatory optimizations get to run.
Add a new warning that detects when a function will call itself
recursively on all code paths. Attempts to invoke functions like this
may cause unbounded stack growth at least or undefined behavior in the
worst cases.
The detection code is implemented as DFS for a reachable exit path in
a given SILFunction.
We want as few module passes as possible.
Function passes allow the PassManager to do its job.
e.g. it can filter certain functions that should not be applied to the
current pipeline. This will result in less work in the pass itself and
fewer pass manager related bugs.
Function passes are easier to understand and debug in the context of the
pipeline. Things like PrettyStackTrace are handled automatically.
Bisecting functionality is builtin.
Function passes are more compatible in general with inter-procedural
analysis.
Function passes are more efficient.
A single module pass in the middle of the pipeline destroys the benefit
of the rest of the pipeline uses function passes.
We run GlobalOpt multiple times in the pass pipeline but in some cases object outlining shouldn't be done too early.
Having it done in a separate pass enables to run it independently from GlobalOpt.
We run GlobalOpt multiple times in the pass pipeline but in some cases object outlining shouldn't be done too early.
Having it done in a separate pass enables to run it independently from GlobalOpt.
* rename "Name" to "Description" in the pass definition, because it's not really the pass name, but the description of a pass
* remove the getName() from Transforms (which actually returned the description of a pass)
* in debug printing, print the pass ID and not the pass description. It makes it easier to correlate the debug output to the actual pass implementation.
* remove the iteration numbering in the pass manager, because we only run a single iteration anyway.