This patch will allow for serialization of RawSyntax trees to JSON,
which allows external tools to get access to a RawSyntax tree.
This also adds a hook into swift-syntax-test to generate JSON for a
given Swift source file, which will be used in tests in subsequent
commits.
* [Parse] Refactored internal structure of Tokens.def and documented usage.
Added a level of structure to the macro definitions to allow Swift
keywords to be cleanly accessed separately from SIL and Swift keywords
together. Documented structure and usage.
* [Parse] Made use of new guarantees and abstractions in Tokens.def
Used guarantees about undefining macros after import and new
SWIFT_KEYWORD abstraction to simplify usage of the Token.def
imports.
* Gardening
This introduces a few unfortunate things because the syntax is awkward.
In particular, the period and following token in \.[a], \.? and \.! are
token sequences that don't appear anywhere else in Swift, and so need
special handling. This is somewhat compounded by \foo.bar.baz possibly
being \(foo).bar.baz or \(foo.bar).baz (parens around the type), and,
furthermore, needing to distinguish \Foo?.bar from \Foo.?bar.
rdar://problem/31724243
The Swift 4 Migrator is invoked through either the driver and frontend
with the -update-code flag.
The basic pipeline in the frontend is:
- Perform some list of syntactic fixes (there are currently none).
- Perform N rounds of sema fix-its on the primary input file, currently
set to 7 based on prior migrator seasons. Right now, this is just set
to take any fix-it suggested by the compiler.
- Emit a replacement map file, a JSON file describing replacements to a
file that Xcode knows how to understand.
Currently, the Migrator maintains a history of migration states along
the way for debugging purposes.
- Add -emit-remap frontend option
This will indicate the EmitRemap frontend action.
- Don't fork to a separte swift-update binary.
This is going to be a mode of the compiler, invoked by the same flags.
- Add -disable-migrator-fixits option
Useful for debugging, this skips the phase in the Migrator that
automatically applies fix-its suggested by the compiler.
- Add -emit-migrated-file-path option
This is used for testing/debugging scenarios. This takes the final
migration state's output text and writes it to the file specified
by this option.
- Add -dump-migration-states-dir
This dumps all of the migration states encountered during a migration
run for a file to the given directory. For example, the compiler
fix-it migration pass dumps the input file, the output file, and the
remap file between the two.
State output has the following naming convention:
${Index}-${MigrationPassName}-${What}.${extension}, such as:
1-FixitMigrationState-Input.swift
rdar://problem/30926261
* Refactor Tuple Type Syntax
This patch:
- Refactors TypeArgumentListSyntax and
TypeArgumentListSyntaxData to use the SyntaxCollection and
SyntaxCollectionData APIs.
- Refactors TupleTypeElementSyntax to own its trailing comma, and
updates the tests accordingly.
- Provides an infrastructure for promoting types to use
the SyntaxCollection APIs
* Addressed comments.
* Renamed makeBlankTypeArgumentList()
* Update makeTupleType
* Changed makeTupleType to take an element list.
* Updated comment.
* Improved API for creating TupleTypeElementListSyntax'es
* Added round-trip test
* Removed last TypeArgumentList holdovers.
* Fixed round-trip test invocation
This operator[] relies on having the cache contain the right number of
elements, and each element be initialized to nullptr, which was only
happening if NDEBUG was not defined.
rdar://problem/30832595
Implements the following grammar productions:
- function-parameter-list
- function-parameter
This is mostly reusable for other flavors of function declarations,
such as initializers and whatnot, but those will have separate
top-level syntax nodes.
https://bugs.swift.org/browse/SR-4067
This will make it easier to incrementally implement syntax nodes,
while allowing us to embed nodes that we do know about inside ones
that we don't.
https://bugs.swift.org/browse/SR-4062
Also includes for its substructure:
- function-call-argument
- function-call-argument-list
- symbolic-reference-expression (for the call target)
https://bugs.swift.org/browse/SR-4044
A return statement needs something to return, so implement
integer-literal-expression too. This necessarily also forced
UnknownExprSyntax, UnknownStmtSyntax, and UnknownDeclSyntax,
which are stand-in token buckets for when we don't know
how to transform/migrate an AST.
This commit also contains the core function for caching
SyntaxData children. This is highly tricky code, with some
detailed comments in SyntaxData.{h,cpp}. The gist is that
we have to atomically swap in a SyntaxData pointer into the
child field, so we can maintain pointer identity of SyntaxData
nodes, while still being able to cache them internally.
To prove that this works, there is a multithreaded test that
checks that two threads can ask for a child that hasn't been
cached yet without crashing or violating pointer identity.
https://bugs.swift.org/browse/SR-4010
Add an option to the lexer to go back and get a list of "full"
tokens, which include their leading and trailing trivia, which
we can index into from SourceLocs in the current AST.
This starts the Syntax sublibrary, which will support structured
editing APIs. Some skeleton support and basic implementations are
in place for types and generics in the grammar. Yes, it's slightly
redundant with what we have right now. lib/AST conflates syntax
and semantics in the same place(s); this is a first step in changing
that to separate the two concepts for clarity and also to get closer
to incremental parsing and type-checking. The goal is to eventually
extract all of the syntactic information from lib/AST and change that
to be more of a semantic/symbolic model.
Stub out a Semantics manager. This ought to eventually be used as a hub
for encapsulating lazily computed semantic information for syntax nodes.
For the time being, it can serve as a temporary place for mapping from
Syntax nodes to semantically full lib/AST nodes.
This is still in a molten state - don't get too close, wear appropriate
proximity suits, etc.
These APIs return SourceLocs, and eventually the Parser should consume
tokens, which now include source trivia such as whitespace and comments,
and package them into a purely syntactic tree. Just a tiny step. NFC.
Store leading a trailing "trivia" around a token, such as whitespace,
comments, doc comments, and escaping backticks. These are syntactically
important for preserving formatting when printing ASTs but don't
semantically affect the program.
Tokens take all trailing trivia up to, but not including, the next
newline. This is important to maintain checks that statements without
semicolon separators start on a new line, among other things.
Trivia are now data attached to the ends of tokens, not tokens
themselves.
Create a new Syntax sublibrary for upcoming immutable, persistent,
thread-safe ASTs, which will contain only the syntactic information
about source structure, as well as for generating new source code, and
structural editing. Proactively move swift::Token into there.
Since this patch is getting a bit large, a token fuzzer which checks
for round-trip equivlence with the workflow:
fuzzer => token stream => file1
=> Lexer => token stream => file 2 => diff(file1, file2)
Will arrive in a subsequent commit.
This patch does not change the grammar.