This is libIDE side implementation for collecting all type information in a source
file. When several expression share the same source range, we always report the
type of the outermost expression.
rdar://35199889
This comes up because when we perform mandatory inlining, we perform the
transform as we inline. So the tests for this are in mandatory_inlining
naturally.
This is like '@inlinable', except that the symbol does not have a public
entry point in the generated binary at all; it is deserialized and a copy
is always emitted into the client binary, with shared linkage.
Just like '@inlinable', if you apply this to an internal declaration it
becomes '@usableFromInline' automatically.
This uses the same mechanism as default arguments ever since Swift 4, so
it should work reasonably well, but there are rough edges with diagnostics
and such. Don't use this if you are not the standard library.
Fixes <rdar://problem/33767512>, <https://bugs.swift.org/browse/SR-5646>.
Using an anonymous union in KeyPathPatternComponent instead of the weird void * in SetterAndIdKind
Added TupleElement kind to KeyPathComponentKindEncoding
Written basic SIL keypath serialization tests
Deleted or edited some old Swift-level tuple key path tests
Sorting of DeclContext-local protocols and conformances shouldn't ever
be necessary, because the underlying data structures that produce
these lists should be deterministic. Sorting can hide any
non-determinism, so stop doing it and we can address the underlying
nondeterminism.
The demangler can be initialized with a preallocated memory on the stack. Only in case of an overflow, the bump pointer allocator mallocs new memory.
Also, support that a new instance of a demangler can "borrow" the free memory from an existing demangler. This is useful because in the runtime the demangler is invoked recursively. With this feature, all the nested demanglers can share a single stack allocated space.
This is done by disallowing nodes with children to also have index or text payloads.
In some cases those payloads were not needed anyway, because the information can be derived later.
In other cases the fix was to insert an additional child node with the index/text payload.
Also, implement single or double children as "inline" children, which avoids needing a separate node vector for children.
All this reduces the needed size for node trees by over 2x.
For context, String, Nil, and Bool already behave this way.
Note: Before it used to construct (call, ... (integer_literal)), and the
call would be made explicit / implicit based on if you did eg: Int(3) or
just 3. This however did not translate to the new world so this PR adds
a IsExplicitConversion bit to NumberLiteralExpr. Some side results of
all this are that some warnings changed a little and some instructions are
emitted in a different order.
SILFunctionType has some logic which examines a selector and decides if it belongs to one of Objective-C’s special “method families”, like -alloc* and -copy*, which need to return a retained pointer instead of an autoreleased one. This change extracts most of that logic into SwiftAST as ObjCSelector::getSelectorFamily(), while leaving details specific to SIL’s use of it behind.
I also ported the constant_propagation.sil tests over for ownership and updated
a few parts of the cast optimizer so that those tests pass with and without
ownership. I purposely only updated the parts of the cast optimizer that crashed
with ownership in the relevant test so that I can add new sil code coverage for
those uncovered code paths.