Once the '@escaping' bit is removed from TupleTypeElt, it no longer makes
sense to print argument lists as if they were TupleTypes or ParenTypes,
since function types are '@escaping' by default inside tuples but not
in argument lists.
Instead, print ArrayRef<AnyFunctionType::Param> directly. For now this
introduces some awkward usages of AnyFunctionType::decomposeInput();
these will go away once the AST is changed to represent the argument list
as a list of expressions and not a single tuple expression.
TupleShuffleExpr could not express the full range of tuple conversions that
were accepted by the constraint solver; in particular, while it could re-order
elements or introduce and eliminate labels, it could not convert the tuple
element types to their supertypes.
This was the source of the annoying "cannot express tuple conversion"
diagnostic.
Replace TupleShuffleExpr with DestructureTupleExpr, which evaluates a
source expression of tuple type and binds its elements to OpaqueValueExprs.
The DestructureTupleExpr's result expression can then produce an arbitrary
value written in terms of these OpaqueValueExprs, as long as each
OpaqueValueExpr is used exactly once.
This is sufficient to express conversions such as (Int, Float) => (Int?, Any),
as well as the various cases that were already supported, such as
(x: Int, y: Float) => (y: Float, x: Int).
https://bugs.swift.org/browse/SR-2672, rdar://problem/12340004
Before extending TupleShuffleExpr to represent all tuple
conversions allowed by the constraint solver, remove the
parts of TupleShuffleExpr that are no longer needed; this is
support for default arguments, varargs, and scalar-to-tuple and
tuple-to-scalar conversions.
Right now we use TupleShuffleExpr for two completely different things:
- Tuple conversions, where elements can be re-ordered and labels can be
introduced/eliminated
- Complex argument lists, involving default arguments or varargs
The first case does not allow default arguments or varargs, and the
second case does not allow re-ordering or introduction/elimination
of labels. Furthermore, the first case has a representation limitation
that prevents us from expressing tuple conversions that change the
type of tuple elements.
For all these reasons, it is better if we use two separate Expr kinds
for these purposes. For now, just make an identical copy of
TupleShuffleExpr and call it ArgumentShuffleExpr. In CSApply, use
ArgumentShuffleExpr when forming the arguments to a call, and keep
using TupleShuffleExpr for tuple conversions. Each usage of
TupleShuffleExpr has been audited to see if it should instead look at
ArgumentShuffleExpr.
In sequent commits I plan on redesigning TupleShuffleExpr to correctly
represent all tuple conversions without any unnecessary baggage.
Longer term, we actually want to change the representation of CallExpr
to directly store an argument list; then instead of a single child
expression that must be a ParenExpr, TupleExpr or ArgumentShuffleExpr,
all CallExprs will have a uniform representation and ArgumentShuffleExpr
will go away altogether. This should reduce memory usage and radically
simplify parts of SILGen.
When a Decl is also a DeclContext, these two concepts are identical,
and we rely on that throughout the compiler.
No functionality change; we appear to already be doing this correctly.
This is a follow-up to https://github.com/apple/swift/pull/21783
which made `is{Setter}AccessibleFrom` respect `-disable-access-control`
flag. Now it's `getAdjustedFormalAccess` turn to do the same.
Removes the _getBuiltinLogicValue intrinsic in favor of an open-coded
struct_extract in SIL. This removes Sema's last non-literal use of builtin
integer types and unblocks a bunch of cleanup.
This patch would be NFC, but it improves line information for conditional expression codegen.
GenericParamList::OuterParameters would mirror the nesting structure
of generic DeclContexts. This resulted in redundant code and caused
unnecessary complications for extensions and protocols, whose
GenericParamLists are constructed after parse time.
Instead, lets only use OuterParameters to link together the multiple
parameter lists of a single extension, or parameter lists in SIL
functions.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Re-applied after fixing a bug in Serialization where the DeclContext
wasn't being set correctly for extensions with nested parameters. I
was unable to come up with a reduced test case, but the CoreStore
project in the source compatibility suite was failing without the
Serialization change, and now it isn't.
If the sub-expression of the 'try?' is optional, the result will be the same level of optional-ness.
If the sub-expression is non-optional, the result is optional.
Thus, the following lines all end up with the same type of 'Int?'
- let x = try? 3 as Int
- let x = try? 3 as? Int
- let x = try? 3 as Int?
`array-to-pointer` and other conversions are not restricted to apply
expressions, (dynamic) subscript arguments have them too, which
verifier has to support.
Resolves: rdar://problem/45825806
The `Stmt` and `Expr` classes had both `dump` and `print` methods that behaved similarly, making it unclear what each method was for. Following a conversation in https://forums.swift.org/t/unifying-printing-logic-in-astdumper/15995/6 the `dump` methods will be used to print the S-Expression-like ASTs, and the `print` methods will be used to print the more textual ASTPrinter-based representations. The `Stmt` and `Expr` classes seem to be where this distinction was more ambiguous. These changes should fix that ambiguity.
A few other classes also have `print` methods used to print straightforward representations that are neither the S-Expressions nor ASTPrinters. These were left as they are, as they don't cause the same ambiguity.
It should be noted that the ASTPrinter implementations themselves haven't yet been finished and aren't a part of these changes.
* Introduce stored inlinable function bodies
* Remove serialization changes
* [InterfaceGen] Print inlinable function bodies
* Clean up a little bit and add test
* Undo changes to InlinableText
* Add serialization and deserialization for inlinable body text
* Allow parser to parse accessor bodies in interfaces
* Fix some tests
* Fix remaining tests
* Add tests for usableFromInline decls
* Add comments
* Clean up function body printing throughout
* Add tests for subscripts
* Remove comment about subscript inlinable text
* Address some comments
* Handle lack of @objc on Linux
This silences the instances of the warning from Visual Studio about not all
codepaths returning a value. This makes the output more readable and less
likely to lose useful warnings. NFC.
Change a couple of getAs() to castTo(), so that we assert instead of
crashing with a null pointer dereference if a TupleShuffleExpr has
the wrong type.
Note that the verifier can no longer assert that validated
declarations have access, because... they don't! And there's
no separate verification level for finalized declarations,
so I'm just going to remove that check.
Most of this patch is just removing special cases for materializeForSet
or other fairly mechanical replacements. Unfortunately, the rest is
still a fairly big change, and not one that can be easily split apart
because of the quite reasonable reliance on metaprogramming throughout
the compiler. And, of course, there are a bunch of test updates that
have to be sync'ed with the actual change to code-generation.
This is SR-7134.
Parsed declarations would create an untyped 'self' parameter;
synthesized, imported and deserialized declarations would get a
typed one.
In reality the type, if any, depends completely on the properties
of the function in question, so we can just lazily create the
'self' parameter when needed.
If the function already has a type, we give it a type right there;
otherwise, we check if a 'self' was already created when we
compute a function's type and set the type of 'self' then.
- getAsDeclOrDeclExtensionContext -> getAsDecl
This is basically the same as a dyn_cast, so it should use a 'getAs'
name like TypeBase does.
- getAsNominalTypeOrNominalTypeExtensionContext -> getSelfNominalTypeDecl
- getAsClassOrClassExtensionContext -> getSelfClassDecl
- getAsEnumOrEnumExtensionContext -> getSelfEnumDecl
- getAsStructOrStructExtensionContext -> getSelfStructDecl
- getAsProtocolOrProtocolExtensionContext -> getSelfProtocolDecl
- getAsTypeOrTypeExtensionContext -> getSelfTypeDecl (private)
These do /not/ return some form of 'this'; instead, they get the
extended types when 'this' is an extension. They started off life with
'is' names, which makes sense, but changed to this at some point. The
names I went with match up with getSelfInterfaceType and
getSelfTypeInContext, even though strictly speaking they're closer to
what getDeclaredInterfaceType does. But it didn't seem right to claim
that an extension "declares" the ClassDecl here.
- getAsProtocolExtensionContext -> getExtendedProtocolDecl
Like the above, this didn't return the ExtensionDecl; it returned its
extended type.
This entire commit is a mechanical change: find-and-replace, followed
by manual reformatted but no code changes.