When printing a swiftinterface, represent opaque result types using an attribute that refers to
the mangled name of the defining decl for the opaque type. To turn this back into a reference
to the right decl's implicit OpaqueTypeDecl, use type reconstruction. Since type reconstruction
doesn't normally concern itself with non-type decls, set up a lookup table in SourceFiles and
ModuleFiles to let us handle the mapping from mangled name to opaque type decl in type
reconstruction.
(Since we're invoking type reconstruction during type checking, when the module hasn't yet been
fully validated, we need to plumb a LazyResolver into the ASTBuilder in an unsightly way. Maybe
there's a better way to do this... Longer term, at least, this surface design gives space for
doing things more the right way--a more request-ified decl validator ought to be able to naturally
lazily service this request without the LazyResolver reference, and if type reconstruction in
the future learns how to reconstruct non-type decls, then the lookup tables can go away.)
Tear out the hacks to pre-substitute opaque types before they enter the SIL type system.
Implement UnderlyingToOpaqueExpr as bitcasting the result of the underlying expression from the
underlying type to the opaque type.
To represent the abstracted interface of an opaque type, we need a generic signature that refines
the outer context generic signature with an additional generic parameter representing the underlying
type and its exposed constraints. Opaque types also need to be keyed by their originating decl, so
that we can treat values of the same opaque type as the same. When we check a FuncDecl with an
opaque type specified as its return type, create an OpaqueTypeDecl and associate it with the
originating decl. (A representation for *types* derived from the opaque decl will come next.)
ASTDumper doesn’t have any way to look up key path component types in the constraint solver, so they’re currently shown as null. This change adds a hook to look them up and looks in the key path component’s FunctionResult locator, which is where subscripts already keep their return type.
Escapingness is a property of the type of a value, not a property of a function
parameter. Having it as a separate parameter flag just meant one more piece of
state that could get out of sync and cause weird problems.
Instead, always look at the noescape bit in a function type as the canonical
source of truth.
This does mean that '@escaping' is now printed in a few diagnostics where it was
not printed before; we can investigate these as separate issues, but it is
correct to print it there because the function types in question are, in fact,
escaping.
Fixes <https://bugs.swift.org/browse/SR-10256>, <rdar://problem/49522774>.
Once the '@escaping' bit is removed from TupleTypeElt, it no longer makes
sense to print argument lists as if they were TupleTypes or ParenTypes,
since function types are '@escaping' by default inside tuples but not
in argument lists.
Instead, print ArrayRef<AnyFunctionType::Param> directly. For now this
introduces some awkward usages of AnyFunctionType::decomposeInput();
these will go away once the AST is changed to represent the argument list
as a list of expressions and not a single tuple expression.
This was partially implemented but the check looked at the lowered
types and not the AST types, and DynamicSelfType is erased at the
top level of a lowered type.
Also use the new mangling for reabstraction thunks with self, to
ensure we don't emit the same symbol with two different lowered
types.
Fixes <https://bugs.swift.org/browse/SR-10309>, <rdar://problem/49703441>.
When a Swift module built with debug info imports a library without
debug info from a textual interface, the textual interface is
necessary to reconstruct types defined in the library's interface. By
recording the Swift interface files in DWARF dsymutil can collect them
and LLDB can find them.
rdar://problem/49751363
These also create a dependency on the implementation module, even if
both the type and the protocol are public. As John puts it, a
conformance is basically a declaration that we name as part of another
declaration.
More rdar://problem/48991061
Turns out this isn't correct, since SROA can explode these structs into
scalars in inlinable code.
Put the logic in place to effectively disable it, and document the steps
we need to take to make it work in the future.
Based on the existing access checker for types used in decls. There's
a common skeleton here but we can't seem to get it out, so for now
add a third DeclVisitor to this file. On the plus side, checking this
alongside access is an easy way to make sure everything gets checked.
Part of rdar://problem/48991061