Fix a trio of issues involving mangling for opaque result types:
* Symbolic references to opaque type descriptors are not substitutions
* Mangle protocol extension contexts correctly
* Mangle generic arguments for opaque result types of generic functions
The (de-)serialization of generic parameter lists for opaque type
declarations is important for the last bullet, to ensure that the
mangling of generic arguments of opaque result types works across
module boundaries.
Fixes the rest of rdar://problem/50038754.
This is to support dynamic function replacement of functions with opaque
result type.
This approach requires that all state is thrown away (that could contain the
old returned type for an opaque type) between replacements.
rdar://48887938
The demangler can be initialized with a preallocated memory on the stack. Only in case of an overflow, the bump pointer allocator mallocs new memory.
Also, support that a new instance of a demangler can "borrow" the free memory from an existing demangler. This is useful because in the runtime the demangler is invoked recursively. With this feature, all the nested demanglers can share a single stack allocated space.
This is done by disallowing nodes with children to also have index or text payloads.
In some cases those payloads were not needed anyway, because the information can be derived later.
In other cases the fix was to insert an additional child node with the index/text payload.
Also, implement single or double children as "inline" children, which avoids needing a separate node vector for children.
All this reduces the needed size for node trees by over 2x.
New(er) grammar:
// same module as conforming type, or non-unique
protocol-conformance-ref ::= protocol 'HP'
// same module as protocol
protocol-conformance-ref ::= protocol 'Hp'
// retroactive
protocol-conformance-ref ::= protocol module
We don't make use of this distinction anywhere yet, but we could in
the future.
Fix to 510b64fcd5. The mangling operator "HP" has to distinguish
between "protocol" and "protocol module", not between the presence
or absence of protocol-conformance-ref. New grammar:
protocol-conformance-ref ::= protocol
protocol-conformance-ref ::= protocol module 'HP'
rdar://problem/46735592, again
Due to some unfortunate refactoring, protocol-conformance-ref is a
nonterminal in the mangling grammar that doesn't have its own
operator:
```
protocol-conformance-ref ::= protocol module?
```
Both "module" and "protocol" can be an "identifier", which introduces
a mangling collision. Address the mangling collision by using the
operator "HP".
Fixes rdar://problem/46735592.
Start emitting associated conformance requirement descriptors for
inherited protocols, so we have a symbol to reference from resilient
witness tables and mangled names in the future.
Use a general ‘type’ production for the conforming type of an associated
witness table accessor mangling, so that we can mangle base protocol
witness table accessors. These entities are always internal symbols, so the
mangling itself doesn’t affect the ABI.
A dynamically replaceable function calls through a global variable that
holds the function pointer.
struct ChainEntry {
void *(funPtr)();
struct ChainEntry *next;
}
ChainEntry dynamicallyReplaceableVar;
void dynamicallyReplaceableFunction() {
dynamicallyReplaceableVar.funPtr()
}
dynamic replacements will be chainable so the global variable also
functions as the root entry in the chain of replacements.
A dynamic replacement functions can call the previous implementation by
going through its chain entry.
ChainEntry chainEntryOf_dynamic_replacement_for_foo;
void dynamic_replacement_for_foo() {
// call the previous (original) implementation.
chainEntryOf_dynamic_replacement_for_foo.funPtr();
}
Change the retroactive conformance mangling to use the new
any-protocol-conformance mangling, which maintains more information about
concrete conformances. Specifically, it maintains conformance information
for conditional requirements. It also uses the protocol-conformance-ref
production that will eventually allow symbolic references to protocol
conformance descriptors.
While here, extend the “is retroactive” check during mangling to look for
retroactive conformances in the conditional requirements of a conformance.
The immediate conformance might not be retroactive, but its specialization
might depend on a retroactive conformance. Mangle these as “retroactive”, so
we can correctly reconstruct the exact type.
Introduce complete mangling for references to protocol conformances:
* Mangle requirements of conditional conformances when present.
* Mangle conformance access paths for generic environment-dependent
conformances.
* Abstract protocol conformance references so we can introduce
symbolic references for them.
We were strangely excluding protocols from being symbolically referenced
in the any-generic-type production, which meant that we could not resolve
(e.g.) associated type references to private protocols at runtime. Allow
protocol symbolic references in this position, and cope with it in the
demangler.
Fixes the rest of rdar://problem/44977236.
Extending the mangling of symbolic references to also include indirect
symbolic references. This allows mangled names to refer to context
descriptors (both type and protocol) not in the current source file.
For now, only permit indirect symbolic references within the current module,
because remote mirrors (among other things) is unable to handle relocations.
Co-authored-by: Joe Groff <jgroff@apple.com>
The mangling of associated type paths was only adding the names of
associated types, and not their enclosing protocols. This led to mangling
collisions that could lead to corrupted metadata. In the standard
library, for example, the generic requirements for the
Unicode _ParsingIterator in the standard library ended up encoding an
access to Sequence.Element rather than IteratorProtocol.Element due
to the mangling conflict.
Part of SR-7553 / rdar://problem/39769906.
This function can be queried to find out whether the passed
mangled name is an Objective-C symbol. This will be used
in the debugger to replace an hardcoded check that would
break if the mangling prefix changed.
<rdar://problem/44467875>
Default associated conformance accessors will be used in default
witness tables to fill in associated conformances for defaulted
associated types. Add (de|re|)mangling support for them and make them
linking entities in IRGen.
Associated conformance descriptors are aliases that refer to associated
conformance requirements within a protocol descriptor’s list of
requirements. They will be used to provide protocol resilience against
the addition of new associated conformance requirements (which only makes
sense for newly-introduced, defaulted associated types).
When an associated type witness has a default, record that as part of
the protocol and emit a default associated type metadata accessor into the
default witness table. This allows a defaulted associated type to be
added to a protocol resiliently.
This is another part of rdar://problem/44167982, but it’s still very
limiting because the new associated type cannot have any conformances.
Introduce an alias that refers one element prior to the start of a
protocol descriptor’s protocol requirements. This can be subtracted from
an associated type descriptor address to determine the offset of the
associated type accessor within a corresponding witness table. The code
generation for the latter is not yet implemented.
Avoid a dependency on LLVMSupport at runtime through the `llvm_unreachable`.
This would pull in `llvm_unreachable_internal` in debug builds, which requires a
runtime dependency on LLVMSupport which increases the size of the binary
considerably.
For example:
public struct Mystruct<T> {
func testit<U>(x: T, u: U) {
typealias Myalias = AnyObject
}
}
In this case the Myalias has a generic function as context.