If the -enable-experimental-subclass-existentials staging flag
is on, resolveType() now allows protocol compositions to contain
class types. It also diagnoses if a composition has more than one
superclass requirement.
Also, change diagnostics that talked about 'protocol composition'
to 'protocol-constrained type'.
Since such types can now contain a superclass constraint, it's not
correct to call them protocol composition.
"Protocol-constrained type" isn't quite accurate either because
'Any' has no protocols, and 'AnyObject' will have no protocols but
a general class constraint; but those are edge cases which won't
come up in these diagnostics.
I am going to run it very early and use it to ensure that extra copies due to my
refactoring of SILGenPattern do not cause COW copies to be introduced.
For now, it does a very simple optimization, namely, it eliminates a copy_value,
with only a destroy_value user on a guaranteed parameter.
It is now disabled behind a flag.
- Add CompilerInvocation::getPCHHash
This will be used when creating a unique filename for a persistent
precompiled bridging header.
- Automatically generate and use a precompiled briding header
When we're given both -import-objc-header and -pch-output-dir
arguments, we will try to:
- Validate what we think the PCH filename should be for the bridging
header, based on the Swift PCH hash and the clang module hash.
- If we're successful, we'll just use it.
- If it's out of date or something else is wrong, we'll try to
emit it.
- This gives us a single filename which we can `stat` to check for the
validity of our code completion cache, which is keyed off of module
name, module filename, and module file age.
- Cache code completion results from imported modules
If we just have a single .PCH file imported, we can use that file as
part of the key used to cache declarations in a module. Because
multiple files can contribute to the __ObjC module, we've always given
it the phony filename "<imports>", which never exists, so `stat`-ing it
always fails and we never cache declarations in it.
This is extremely problematic for projects with huge bridging headers.
In the case where we have a single PCH import, this can bring warm code
completion times down to about 500ms from over 2-3s, so it can provide a
nice performance win for IDEs.
- Add a new test that performs two code-completion requests with a bridging header.
- Add some -pch-output-dir flags to existing SourceKit tests that import a bridging
header.
rdar://problem/31198982
Previously we would drop all serialized SIL from partial swiftmodule
files generated while compiling source in non-WMO mode; all that was
missing was linking it in.
This adds a frontend flag, and a test; driver change is coming up
next.
Progress on <rdar://problem/18913977>.
Introduce flags `-enable-swift3-objc-inference` and
`-disable-swift3-objc-inference` to enable/disable the Swift 3 `@objc`
inference rules. Under `-swift-version 3`, default to the former;
under `-swift-version 4`, default to the latter. For testing purposes,
one can provide either flag in eiher language mode.
Introduce an opt-in warning (enabled by the frontend option
-warn-swift3-objc-inference) for each declaration for which @objc is
inferred based on Swift 3 rules that no longer apply after SE-0160.
Add an -enforce-exclusivity=... flag to control enforcement of the law of
exclusivity. The flag takes one of four options:
"checked": Perform both static (compile-time) and dynamic (run-time) checks.
"unchecked": Perform only static enforcement. This is analogous to -Ounchecked.
"dynamic-only": Perform only dynamic checks. This is for staging purposes.
"none": Perform no checks at all. This is also for staging purposes.
The default, for now, is "none".
The intent is that in the fullness of time, "checked" and "unchecked" will
be the only legal options with "checked" the default. That is, static
enforcement will always be enabled and dynamic enforcement will be enabled
by default.
Flip the polarity of the frontend flag controlling whether TSan treats inout
accesses as conceptual writes. It is now on by default. This lets TSan detect
racing mutating methods even when those methods are not themselves instrumented
(such as methods on Standard Library collections).
This behavior can be disabled by passing:
-Xfrontend -disable-tsan-inout-instrumentation
when compiling under TSan.
rdar://problem/31069963
(This re-applies #7736 with an update to the
tsan-inout.swift execution test to handle configurations where
TSan's ignore_interceptors_accesses is enabled by default.)
Add SILGen instrumentation to treat inout accesses as Thread Sanitizer writes.
The goal is to catch races on inout accesses even when there is a not an
llvm-level read/write to a particular address. Ultimately
this will enable TSan to, for example, report racy writes to distinct
stored properties of a common struct as a data race.
This instrumentation is off by default. It can be enabled with the
'enable-experimental-tsan-inout-instrumentation' frontend flag.
The high-level approach is to add a SIL-level builtin that represents a call
to a TSan routine in compiler-rt. Then, when emitting an address for an LValue
as part of an inout expression, we call this builtin for each path component
that represents an LValue. I've added an 'isRValue()' method to PathComponent
that tracks whether a component represents an RValue or an LValue. Right the
only PathComponent that sometimes returns 'true' is ValueComponent().
For now, we're instrumenting only InoutExprs, but in the future it probably
makes sense to instrument all LValue accesses. In this patch I've
added a 'TSanKind' parameter to SILGenFunction::emitAddressOfLValue() and
its helpers to limit instrumentation to inout accesses. I envision that this
parameter will eventually go away.
This is purely designed to cheaply compute dependency graphs between
modules, and thus only lists the top-level names (i.e. not submodules)
and doesn't do any form of semantic analysis.
Add SILGen instrumentation to treat inout accesses as Thread Sanitizer writes.
The goal is to catch races on inout accesses even when there is a not an
llvm-level read/write to a particular address. Ultimately
this will enable TSan to, for example, report racy writes to distinct
stored properties of a common struct as a data race.
This instrumentation is off by default. It can be enabled with the
'enable-experimental-tsan-inout-instrumentation' frontend flag.
The high-level approach is to add a SIL-level builtin that represents a call
to a TSan routine in compiler-rt. Then, when emitting an address for an LValue
as part of an inout expression, we call this builtin for each path component
that represents an LValue. I've added an 'isRValue()' method to PathComponent
that tracks whether a component represents an RValue or an LValue. Right the
only PathComponent that sometimes returns 'true' is ValueComponent().
For now, we're instrumenting only InoutExprs, but in the future it probably
makes sense to instrument all LValue accesses. In this patch I've
added a 'TSanKind' parameter to SILGenFunction::emitAddressOfLValue() and
its helpers to limit instrumentation to inout accesses. I envision that this
parameter will eventually go away.
Adds the runtime implementation for copy-on-write existentials. This support is
enabled if SWIFT_RUNTIME_ENABLE_COW_EXISTENTIALS is defined. Focus is on
correctness -- not performance yet.
Don't use allocate/deallocate/projectBuffer witnesses for globals in cow
existential mode.
Use SWIFT_RUNTIME_ENABLE_COW_EXISTENTIALS configuration to set the default for
SILOptions.
This includes an IRGen fix to use the right projection in
emitMetatypeOfOpaqueExistential if SWIFT_RUNTIME_ENABLE_COW_EXISTENTIALS is set.
Use unknownRetain instead of native retain in dynamicCastToExistential.
SourceKit always sets it positively. This may lead to more aggressive fixits however
less informative messages. We currently use the flag only for filling protocol stubs.
This is preparation for a future patch adding experimental support to
treat Swift-level inout accesses as Thread Sanitizer writes. That patch will
extend the compiler so that additional TSan instrumentation is emitted
during SILGen, rather than solely during IRGen and at the LLVM level as occurs
now.
This patch adds a 'Sanitize' field to SILOptions and moves parsing of
'sanitize=...' to ParseSILArgs() from ParseIRGenArgs() where it is
now.
The sanitizer-coverage flag remains an IRGen-level option; SILGen does not
need to know about the coverage metric.
Put in a general mechanism for mapping user-specified "compatibility
versions" to proper "effective versions" (what #if and @available
checking should respect). This may still be different from the
intrinsic "language version"; right now master is considered a "3.1"
compiler with a "Swift 4 mode", and we plan to ship a "4.0" compiler
with a "Swift 3 mode" that will have a version number of something
like "3.2".
rdar://problem/29884401 / SR-3791
This is disabled by default but enabled under the frontend option
-propagate-constraints.
The idea here is to have a pass that enforces local consistency in our
constraint system, in order to reduce the domains of constraint
variables, speeding up the solving of the constraint system.
The initial focus will be on reducing the size of the disjunctions for
function overloads with the hope that it substantially improves the
performance of type checking many expressions.
These changes caused a number of issues:
1. No debug info is emitted when a release-debug info compiler is built.
2. OS X deployment target specification is broken.
3. Swift options were broken without any attempt any recreating that
functionality. The specific option in question is --force-optimized-typechecker.
Such refactorings should be done in a fashion that does not break existing
users and use cases.
This reverts commit e6ce2ff388.
This reverts commit e8645f3750.
This reverts commit 89b038ea7e.
This reverts commit 497cac64d9.
This reverts commit 953ad094da.
This reverts commit e096d1c033.
rdar://30549345
This has the effect of propagating the search path to the clang importer as '-iframework'.
It doesn't affect whether a swift module is treated as system or not, this can be done as follow-up enhancement.
This patch splits add_swift_library into two functions one which handles
the simple case of adding a library that is part of the compiler being
built and the second handling the more complicated case of "target"
libraries, which may need to build for one or more targets.
The new add_swift_library is built using llvm_add_library, which re-uses
LLVM's CMake modules. In adapting to use LLVM's modules some of
add_swift_library's named parameters have been removed and
LINK_LIBRARIES has changed to LINK_LIBS, and LLVM_LINK_COMPONENTS
changed to LINK_COMPONENTS.
This patch also cleans up libswiftBasic's handling of UUID library and
headers, and how it interfaces with gyb sources.
add_swift_library also no longer has the FILE_DEPENDS parameter, which
doesn't matter because llvm_add_library's DEPENDS parameter has the same
behavior.
[NFC] Add -enable-sil-opaque-values frontend option.
This will be used to change the SIL-level calling convention for opaque values,
such as generics and resilient structs, to pass-by-value. Under this flag,
opaque values have SSA lifetimes, managed by copy_value and destroy_value.
This will make it easier to optimize copies and verify ownership.
* [SILGen] type lowering support for opaque values.
Add OpaqueValueTypeLowering.
Under EnableSILOpaqueValues, lower address-only types as opaque values.
* [SIL] Fix ValueOwnershipKind to support opaque SIL values.
* Test case: SILGen opaque value support for Parameter/ResultConvention.
* [SILGen] opaque value support for function arguments.
* Future Test case: SILGen opaque value specialDest arguments.
* Future Test case: SILGen opaque values: emitOpenExistential.
* Test case: SIL parsing support for EnableSILOpaqueValues.
* SILGen opaque values: prepareArchetypeCallee.
* [SIL Verify] allow copy_value for EnableSILOpaqueValues.
* Test cast: SIL serializer support for opaque values.
* Add a static_assert for ParameterConvention layout.
* Test case: Mandatory SILOpt support for EnableSILOpaqueValues.
* Test case: SILOpt support for EnableSILOpaqueValues.
* SILGen opaque values: TypeLowering emitCopyValue.
* SILBuilder createLoad. Allow loading opaque values.
* SIL Verifier. Allow loading and storing opaque values.
* SILGen emitSemanticStore support for opaque values.
* Test case for SILGen emitSemanticStore.
* Test case for SIL mandatory support for inout assignment.
* Fix SILGen opaque values test case after rebasing.
There's a class of errors in Serialization called "circularity
issues", where declaration A in file A.swift depends on declaration B
in file B.swift, and B also depends on A. In some cases we can manage
to type-check each of these files individually due to the laziness of
'validateDecl', but then fail to merge the "partial modules" generated
from A.swift and B.swift to form a single swiftmodule for the library
(because deserialization is a little less lazy for some things). A
common case of this is when at least one of the declarations is
nested, in which case a lookup to find that declaration needs to load
all the members of the parent type. This gets even worse when the
nested type is defined in an extension.
This commit sidesteps that issue specifically for nested types by
creating a top-level, per-file table of nested types in the "partial
modules". When a type is in the same module, we can then look it up
/without/ importing all other members of the parent type.
The long-term solution is to allow accessing any members of a type
without having to load them all, something we should support not just
for module-merging while building a single target but when reading
from imported modules as well. This should improve both compile time
and memory usage, though I'm not sure to what extent. (Unfortunately,
too many things still depend on the whole members list being loaded.)
Because this is a new code path, I put in a switch to turn it off:
frontend flag -disable-serialization-nested-type-lookup-table
https://bugs.swift.org/browse/SR-3707 (and possibly others)
The implementation's not quite right (no objc_msgSend_stret on arm64)
and since other host OSs aren't being tested right now it's just dead
code there.
rdar://problem/29982823