Fixes:
https://bugs.swift.org/browse/SR-3455https://bugs.swift.org/browse/SR-3663https://bugs.swift.org/browse/SR-4032https://bugs.swift.org/browse/SR-4031
Now, compilation conditions are validated at first, then evaluated. Also,
in non-Swift3 mode, '&&' now has higher precedence than '||'.
'A || B && C || D' are evaluated as 'A || (B && C) || D'.
Swift3 source breaking changes:
* [SR-3663] This used to be accepted and evaluate to 'true' because of short
circuit without any validation.
#if true || true * 12 = try Anything is OK?
print("foo")
#endif
In this change, remaining expressions are properly validated and
diagnosed if it's invalid.
* [SR-4031] Compound name references are now diagnosed as errors.
e.g. `#if os(foo:bar:)(macOS)` or `#if FLAG(x:y:)`
Swift3 compatibility:
* [SR-3663] The precedence of '||' and '&&' are still the same and the
following code evaluates to 'true'.
#if false || true && false
print("foo")
#endif
Add an option to the lexer to go back and get a list of "full"
tokens, which include their leading and trailing trivia, which
we can index into from SourceLocs in the current AST.
This starts the Syntax sublibrary, which will support structured
editing APIs. Some skeleton support and basic implementations are
in place for types and generics in the grammar. Yes, it's slightly
redundant with what we have right now. lib/AST conflates syntax
and semantics in the same place(s); this is a first step in changing
that to separate the two concepts for clarity and also to get closer
to incremental parsing and type-checking. The goal is to eventually
extract all of the syntactic information from lib/AST and change that
to be more of a semantic/symbolic model.
Stub out a Semantics manager. This ought to eventually be used as a hub
for encapsulating lazily computed semantic information for syntax nodes.
For the time being, it can serve as a temporary place for mapping from
Syntax nodes to semantically full lib/AST nodes.
This is still in a molten state - don't get too close, wear appropriate
proximity suits, etc.
Add diagnostics to fix decls with consecutive identifiers. This applies to
types, properties, variables, and enum cases. The diagnostic adds a camel-cased option if it is different than the first option.
https://bugs.swift.org/browse/SR-3599
The typedef `swift::Module` was a temporary solution that allowed
`swift::Module` to be renamed to `swift::ModuleDecl` without requiring
every single callsite to be modified.
Modify all the callsites, and get rid of the typedef.
This reverts the contents of #5778 and replaces it with a far simpler
implementation of condition resolution along with canImport. When
combined with the optimizations in #6279 we get the best of both worlds
with a performance win and a simpler implementation.
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
This completely removes Parse’s ability to make any judgement calls
about compilation conditions, instead the parser-relevant parts of
‘evaluateConditionalCompilationExpr’ have been moved into
‘classifyConditionalCompilationExpr’ where they exist to make sure only
decls that we want to parse actually parse later.
The condition-evaluation parts have been moved into NameBinding in the
form of a Walker that evaluates and collapses IfConfigs. This walker
is meant as an homage to PlaygroundLogger. It should probably be
factored out into a common walker at some point in the future.
These APIs return SourceLocs, and eventually the Parser should consume
tokens, which now include source trivia such as whitespace and comments,
and package them into a purely syntactic tree. Just a tiny step. NFC.
Store leading a trailing "trivia" around a token, such as whitespace,
comments, doc comments, and escaping backticks. These are syntactically
important for preserving formatting when printing ASTs but don't
semantically affect the program.
Tokens take all trailing trivia up to, but not including, the next
newline. This is important to maintain checks that statements without
semicolon separators start on a new line, among other things.
Trivia are now data attached to the ends of tokens, not tokens
themselves.
Create a new Syntax sublibrary for upcoming immutable, persistent,
thread-safe ASTs, which will contain only the syntactic information
about source structure, as well as for generating new source code, and
structural editing. Proactively move swift::Token into there.
Since this patch is getting a bit large, a token fuzzer which checks
for round-trip equivlence with the workflow:
fuzzer => token stream => file1
=> Lexer => token stream => file 2 => diff(file1, file2)
Will arrive in a subsequent commit.
This patch does not change the grammar.
If we found any error in a list, in most cases, we cannot expect that the
following tokens could construct a valid element. Skip them, instead of trying
to parse them as the next element. This significally reduces bogus diagnostics.
Bailout if seeing tok::eof or token that can never start a element, after
parsing an element. This silences superfluous "expected ',' separator" error,
or misleading expected declaration error. What we should emit is
"expected ')' in expression list, or "expected '}' in struct".
Use tok::NUM_TOKENS instead. tok::unknown can easily appear in source code.
For instance `skipUntil(tok::eof)` did not work as expected, because that was
`skipUntil(tok::eof, tok::unknown)` hence does stop at error tokens such as
`0xG` (invalid hex number literal).
Revert 2abc92bbb5, since that was
accidental side-effect of 45118037cc.
Forward references are not allowed actually.
If '>' could not be found, the parser should return the location of the
last token parsed, instead of the current token.
Previously, it may causes ASTVerifier error "child source range not contained
within its parent" in some cases.
This can be used as QoI for things like 'NSASCIIStringEncoding', which
is going to canonically be `String.Encoding.ascii` if/when SE-0086 is
accepted.
We can't actually handle this in NS_SWIFT_NAME (that is, we can't
/import/ something onto a nested type), but that's okay: we already
have stricter limitations on NS_SWIFT_NAME enforced by Clang.
rdar://problem/26352374
- Remove stray newline
- Adjust wording when recommending backticks for a keyword identifier
- Provide fix-it when encountering a keyword as an identifier
rdar://problem/25761380
When declaring a function like func repeat(){}, the diagnostic is
"expected an identifier" but 'repeat' looks like a reasonable
identifier at first glance, so actually say why it isn't.
rdar://problem/25761380
It should have the same form as the argument to NS_SWIFT_NAME
in Objective-C, except that it permits operators and (currently)
disallows instance members and properties. We do get to share the
same parsing code, at least.
This actually caught an error in the Foundation overlay!
Groundwork for SR-1008.
The swift_name string format now supports "getter:" and "setter:"
prefixes to indicate that a function is the getter or setter of a
Swift-synthesized property. Start parsing these DeclNames and make
sure they're reflected in the Swift name lookup tables.
[Clang update required]
A swift_name attribute on a global declaration can specify a dotted
name (e.g., SomeStruct.member) to map that global into a member of the
(Swift-)named type. Handle this mapping in DeclName parsing, plumb it
through importFullName, and cope with it in the Swift name lookup
tables (tested via the dump) and importing into a Swift DeclContext
(as-yet-untested). Part of SE-0033.
...because "build configuration" is already the name of an Xcode feature.
- '#if' et al are "conditional compilation directives".
- The condition is a "conditional compilation expression", or just
"condition" if it's obvious.
- The predicates are "platform conditions" (including 'swift(>=...)')
- The options set with -D are "custom conditional compilation flags".
(Thanks, Kevin!)
I left "IfConfigDecl" as is, as well as SourceKit's various "BuildConfig"
settings because some of them are part of the SourceKit request format.
We can change these in follow-up commits, or not.
rdar://problem/19812930
Expand the "skip" functions in the parser to be more careful about
not skipping passed a #endif or a code completion token, since they
are synchronization points for the parser.
The fix was to change Parser::delayParseFromBeginningToHere to use
a manual loop instead of skipUntil (which can stop early for non-EOF
tokens).
Swift parser splits tokens in few cases, but it swift::tokenize(...) does not know
about that. In order to reconstruct token stream as it was seen by the parser,
we need to collect the tokens it decided to split and use this information
in swift::tokenize(...).
Introduce a new attribute, swift3_migration, that lets us describe the
transformation required to map a Swift 2.x API into its Swift 3
equivalent. The only transformation understood now is "renamed" (to
some other declaration name), but there's a message field where we can
record information about other changes. The attribute can grow
somewhat (e.g., to represent parameter reordering) as we need it.
Right now, we do nothing but store and validate this attribute.
Allow all keywords except for parameter introducers (var/let/inout) to
be argument labels when declaring or calling a
function/initializer/subscript, e.g., this
func touchesMatching(phase: NSTouchPhase, `in` view: NSView?) -> Set<NSTouch>
can now be expressed as
func touchesMatching(phase: NSTouchPhase, in view: NSView?) -> Set<NSTouch>
and the call goes from
event.touchesMatching(phase, `in`: view)
to
event.touchesMatching(phase, in: view)
Fixes [SR-344](https://bugs.swift.org/browse/SR-344) /
rdar://problem/22415674.